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Abstract

We create a method for stress testing an economic literature via a novel declarative
econometric language. Critically, the language permits generalizable specification
manipulation, thereby enabling us to stress test assumptions and methodology at
the literature level. Applying this approach to the M&A literature, we find that
within-literature variation in how the dependent variable (cumulative abnormal
returns) and control variables (leverage and Tobin’s Q) are defined creates signif-
icant dispersion (and skewness) in the estimated significance of variables of interest.
Taken together, our publicly available approach will allow researchers to succinctly
demonstrate the robustness of individual papers and stress test economic literatures.
This provides a generalizable path to study the mechanisms behind the uncertainty
created by researchers in the evidence-generating process.
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1. Introduction

To create a lasting impact, research must be resilient. Replicability, which has been a focus of recent
studies, is a necessary first step in establishing this resilience — findings should be replicable if
they are to be taken as true. Additionally, research needs to withstand methodological challenges.
It is not enough to merely state that others can reproduce results in a body of literature. Findings
should be collectively robust against different assumptions, including sample selection criteria,
specification design, choice of control variables, variable definitions, and estimation method.

Researchers need a way to stress test a literature. For a given research question, empiricists
possess a myriad of choices (researcher degrees of freedom) in the data and evidence generating
processes. These degrees of freedom introduce uncertainty into reported empirical estimates,
creating what Menkveld et al. (2024) identify as “non-standard errors”. Traditionally, to solve this
issue, each empirical paper presents a series of robustness tests that are reported in the body of a
paper, in untabulated results, or in internet appendices.

Paper-specific robustness sections assure readers that the paper’s results are resilient to a limited
set of altered specifications. However, these sections are necessarily idiosyncratic. A paper’s results
are, in general, robust to alternatives presented within the paper. But they may not be robust to
different empirical choices from the evidence-generating process, including alternative hypotheses
analyzed or different variable definitions used in other papers. Literature-level stress testing (i.e.,
systematically stress testing each paper that comprises a literature) is currently challenging to
execute. This limits our understanding as critical assumptions and standard practices that underlie
a literature may never be tested.

The current replication technology is insufficient for stress testing an academic literature.
Replication research projects typically employ numerous researchers, sometimes as many as several
hundred. Each paper is replicated individually from the bottom up, whereby a researcher specifies
the steps to be executed and builds a dataset sequentially, resulting in bespoke data generation
and estimation code written for each paper. The fact that researchers take this approach when
replicating papers is not surprising. They are simply performing what they do on a single paper
for many papers. However, systematic stress testing is virtually impracticable when each paper’s
unique base-level code must be modified.
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To overcome these challenges, we develop and employ a declarative econometric technique,
discussed in detail below, to stress test the merger and acquisition (M&A) literature. This literature
provides an ideal setting for stress testing and declarative econometrics. It is mature, having been
extensively studied over an extended period, and has established results across numerous papers
with similar outcome variables. Papers draw information from frequently used databases, making
specification modification more appropriate. Furthermore, although the event study methodology
is an accepted framework, critical assumptions vary across papers.

In developing a systematic approach to stress testing, an alternative becomes apparent when
one reconciles the significant disparity between how research is formulated and how research is
executed. Research is motivated from big-picture issues. This top-down perspective stands in stark
contrast to how research is implemented. Data manipulation, using languages such as SQL and
those embedded in R, SAS, Stata, and Pandas, is typically written as a bottom-up, step-by-step
process.

Programming languages exhibit a similar distinction between top-down and bottom-up
approaches to coding. Imperative languages, which work from the bottom up, are the most widely
known.¹ In these, each program is crafted step-by-step. However, this is not the only option.
Declarative languages, most notably those in the ML and Lisp families, operate in a fundamentally
different manner. The programmer works from the top down, defining “what” the program does,
with the language itself determining the ordering of bottom-up steps.²

In the context of econometrics, the “what” is the empirical specification itself, not the data
manipulation process. We provide a declarative language and its implementation for empirical
econometric analysis, named Foghorn. Using it, researchers need only write top-level empirical
specifications. And these specifications consist of just two parts: variable definitions and a descrip-
tion of the estimator. The resulting econometric code is succinct, generally more than an order of
magnitude shorter than similar bottom-up code. We present an example highlighting the distinction
between declarative and imperative approaches in Section 2.

¹C, C++, Java, JavaScript, Go, Python, and Rust, to name a few, are primarily imperative programming languages.
²In later sections, we explain how our declarative econometric language determines the bottom-up data manipu-

lation steps from a top-down specification and variable description. A complete discussion is provided in the technical
companion paper (Tumarkin 2025).
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Declarative econometrics enables researchers to undertake new types of economic analysis, in
particular, stress testing an economic literature. It is nearly impossible to systematically modify
analyses using a traditional bottom-up approach, particularly if each paper has bespoke code.
Foghorn, on the other hand, can internally manipulate top-down specifications and variable defini-
tions. Thus, a stress test reflects the desired underlying change in economic reasoning, and Foghorn
generates the corresponding modified bottom-up data generation and analysis steps automatically.

Consider, for example, a possible stress test in corporate finance. Many financial variables scale
with company size. To eliminate the influence of outliers, researchers often normalize, dividing
nominal measures by proxy variables for size. Papers use different size proxy variables (e.g., assets,
market capitalization, number of employees, revenues, and sales). Some researchers normalize
using an end-of-year value, while others use a start-of-year value. Given the variation across papers,
a reasonable stress test is to apply the full range of commonly used normalization techniques to all
the papers in a literature.

Implementing such a test by modifying replication code written from the bottom up would be
difficult. For a single paper, one would first need to manually identify all the normalized variables.
Then, any necessary additional data would need to be incorporated, which would be complicated
due to the company size proxy variables coming from various sources and having different timing.
Finally, the normalized variables must be generated and tests performed. At the literature level, this
would be nearly impracticable given that each paper would require unique, tailor-made modifica-
tions. Furthermore, it would be very complicated to make tests scalable, for example, by combining
individual stress tests into a composite one.

Declaratively implementing a stress test is straightforward since the language only considers
variable definitions. For this example, one writes a stress test that changes the denominator of
normalized variables by examining the algebraic representation. Given a set of possible firm size
proxy variables, 𝒮, a stress test considers any case of division, replacing a size proxy, 𝑠, in the
denominator with an alternative 𝑠′. In other words, the stress testing function 𝑓𝑠′(⋅) is defined as:

𝑓𝑠′(𝑥/𝑠) = 𝑥/𝑠′ if 𝑠 ∈ 𝒮. (1)

The logical implementation of such a function in Foghorn does not differ materially from this
example. Further, unlike a bottom-up approach, stress testing in Foghorn is scalable, with a trivial
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syntax to combine multiple stress tests into a composite and an efficient implementation to
perform a collection of tests.³ It can easily handle variable definitions with multiple component
pieces through its internal recursive data structure. The researcher does not need to enumerate the
possible ways variables may be constructed. Instead, the researcher focuses on the case (or cases)
that require transformation, and Foghorn handles the recursive issues.

We begin with a sample of papers in the literature that analyze cumulative abnormal returns
around M&A announcements, selected from four journals with arguably the highest impact factors
in academic Finance.4 For each paper, we identify the key result as indicated by the authors. We
then declaratively encode the paper’s description of the result’s corresponding estimator, variable
definitions, and sample selection. Our specification is taken verbatim from the paper; we impose no
editorial judgment as to what constitutes the “best” methodology (for example, Kolari, Pynnonen,
and Tuncez (2021); Hou, Xue, and Zhang (2020)). This serves as a baseline specification for
replication and stress testing in Foghorn.

In order to stress tests results from the literature, we must first replicate them. Replication itself
is not a precisely defined concept. Achieving results identical to those published may be impossible,
for example, due to changes in the source databases. We consider a paper replicated when (i) key
variables have point estimates and statistical significance comparable to the published results, (ii)
the replicated sample size is similar to the published size, and (iii) most control variables have
point estimates similar to those published.

Our results show that the papers in our sample are, in general, replicable. The existing literature
presents mixed evidence on the replicability of academic studies. Both Ioannidis (2005) and Chang
and Li (2022) document a significant lack of replicability in the science and the economic litera-
tures, respectively. Chang and Li (2022) documents that only 49% of papers could be replicated,
even after using the author-provided code and with the assistance of the authors of the paper.
In contrast, Jensen, Kelly, and Pedersen (2023) find evidence of replicability in the finance asset
pricing literature.

³Foghorn logically analyzes a collection of stress tests for efficient implementation. It first applies the stress tests to
a baseline specification and generates a master set of all variables that are needed. These are combined into a single
data generating process. It then partitions the master into the appropriate sub-datasets required for each stress test.

4These are the Journal of Finance, Journal of Financial Economics, Journal of Financial and Quantitative Studies,
and the Review of Financial Studies.
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Using Foghorn, we find that we can replicate approximately 79% of the papers in our sample
from the M&A literature.5 Our experience, is that replicability does not come easily, which may
explain the mixed findings in the literature. Given the limited space allocated to describing the
data manipulation process in research papers, authors may elide assumptions, particularly those
that qualify as standard practices. Foghorn overcomes these issues because it can easily perform an
exhaustive search over different standard practice assumptions, allowing us to find a combination
that yields replication results similar to those published. Declarative econometrics necessarily
makes elided assumptions explicit when writing specifications, enabling bi-directional transparency,
transparency from both thee top-down and the bottom-up transparency.

As discussed earlier, the M&A literature has several features that make it an appropriate
laboratory for stress testing and replication. The papers examining cumulative abnormal returns
surrounding acquisition announcements use an event study methodology. However, there is
material variation in how each paper implements the study. Cumulative abnormal returns (CARs)
serves as the dependent variable in our selected studies, capturing the market-based returns of
the announcement to shareholders. Yet, the definition of abnormal returns varies, with 80% of the
papers in our replicated sample using a unique construction.6

We apply our approach and replicate 15 papers on M&A announcement returns drawn from
leading finance journals between 2000 and 2023. These studies share a common event-study
framework but differ in data treatments, variable definitions, and methodological assumptions.
We focus on each paper’s principal CAR-based result, encoding the specification directly from
the published description. Replication requires judgment in cases where details are omitted—for
example, treatments of missing data, construction of composite controls, or choice of estimation
window. Foghorn makes these assumptions explicit and allows efficient searches across plausible
alternatives.

Using qualitative replication criteria—similar coefficient sign, magnitude, and significance,
along with comparable sample sizes—we replicate key findings in 15 papers. While exact numer-

5Our inability to replicate a result does not prove that it is not replicable. Rather, it suggests that our interpretation
of the empirical approach did not yield similar results. Consequently, we do not list those papers whose results we
were unable to replicate.

6Papers differ on the time window used to compute an abnormal return around the announcement, whether the
return is an excess return over a market index or relative to a market model, and the index (or market model) used.
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ical matches are often infeasible due to data updates or unreported assumptions, our results
demonstrate that many published findings can be reconstructed within a shared data-processing
framework. Results in literature can be generated simultaneously without a need to impose paper-
specific methodologies and assumptions to reproduce each result. This highlights the potential for
literature-level replication to clarify common practices, expose implicit assumptions, and provide
bi-directional transparency across studies.

While replication is fundamentally necessary in the sciences, strict replication represents a
relatively low bar. Simply, a replicable result demonstrates that no coding errors were made, but
remains silent on the sensitivity of results to a myriad of (ad hoc or well-motivated) assumptions
and empirical designs found in the literature. Therefore, we now continue our analysis by stress
testing the replicated M&A studies. We do so along two dimensions: the construction of the
independent variable, cumulative abnormal returns (CARs), and the construction of commonly
used control variables (market-to-book/Tobin’s Q and leverage). We choose these because they are
commonly utilized across the literature, but also demonstrate significant variability in how they are
constructed. Thus, we allow the construction of these variables to vary within the literature (how
they are defined within the sample of replicated papers).

Varying CAR windows, expected-return models, and estimation periods produces thousands of
alternative specifications. Across more than 4,500 such tests, we find substantial dispersion in t-
statistics. This provides evidence of the significant impact that researcher degrees of freedom have
on the significance of coefficients consistent with Menkveld et al. (2024). We find similar evidence
when varying the definitions of commonly used control variables. Quantifying these results among
existing published studies that have already undergone the peer-review process will allow the
literature to transparently identify best practices and the impact specific definitions may have on
significance.

Importantly, we also document significant skewness in favor of published results. Specifically,
we find that the t-statistics on the variables of interest from the replicated (published) specifications
in our sample are larger than the t-statistics of the stressed alternatives in over 80% of stress tests.
Economically, we observe an average decline of nearly 0.8 in the magnitude of the t-statistics as a
result of stress tests. Further, over half of the t-statistics of stress tests are at a lower significance
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level (i.e. at a 10% significance versus a 1% significance) than the relevant published/replicated
t-statistic. Finally, we find that results become insignificant in more than one-third of stress tests.
We observe similar results in stress tests on a subsample of papers where t-statistics are less than
three (and therefore a decline in significance is potentially more meaningful).

To study whether the above skewness is a function of the simple dispersion due to non-standard
errors, we perform similar analysis on the t-statistic of replicated variables compared with their
stressed alternatives. However, instead of studying variables of interest, we study control variables.
We continue to find a significant dispersion in the significance of control variables from stress tests.
Importantly, we observe significantly less skewness amongst the significance of control variables.
Given the incentive set given by the publication process for significant results, this finding suggests
that published results systematically favor particular CAR definitions.

We observe similar patterns when analyzing alternative definitions of market- to-book and
leverage on the significance of variables of interest. These tests produce smaller but still meaningful
shifts in significance. Given the indirect nature between the definition of a control variable on
the significance of a variable of interest, this is unsurprising relative to changes in the dependent
variable. Similarly, while the effects are more modest than for CAR construction, they again tend to
benefit the published specification. In addition, we do not observe any skewness when we observe
the impact on the significance of other control variables by varying these definitions. Together,
these findings show that choices in variable definition—whether for outcomes or controls —can
materially affect significance and that published M&A results often occupy the more favorable end
of this distribution.

We contribute to the literature in several ways. We demonstrate that declarative econometrics
can make a significant contribution to academic knowledge, particularly in terms of research
efficiency, replication, transparency, and stress testing. It’s important to note that declarative
econometrics is not intended to replace existing techniques, nor should it. There will always be a
benefit in writing bottom-up data processing and estimation code. Doing so helps researchers build
invaluable, in-depth knowledge of the nuances and idiosyncrasies present in the data. However,
with it’s top down focus, declarative econometrics allows researchers to efficiently present trans-
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parent, continuously validated results and focus on the high-value, intellectual considerations. It
also significantly reduces the time necessary to implement empirical projects.

These benefits create strong value for empirical researches and research outlets. For example,
demonstrating a simple histogram as those presented in this paper allows a researcher to succinctly
summarize that their results are not dependent on a particular variables definition. Further, this
analysis is transparent and can be easily validated by conference discussants, referees, journal
editors, and readers. When a meaningful portion of results are insignificant, it also forces the
researcher to justify the choice of a specific methodological definition or choice as the most appro-
priate to the specific situation that is transparent to others.

We also contribute to the literature by finding a strong level of replicability. However, we also
document strong variability in the significance of estimates by stress testing seemingly innocuous
assumptions for commonly used variables. This demonstrates some of the source for “non-standard
errors” highlighted by Menkveld et al. (2024). Further, we find significant skewness in the liter-
ature favoring published specifications. Stress testing a literature is fundamental different than
performing robustness tests on an individual paper. While a robustness test typically examines a
paper’s assumptions that differ from common practice, literature-level stress testing examines the
assumptions that underlying common practice and how they may co-vary with other innocuous
definitions found in the literature.

2. Illustrative Declarative Econometrics

Declarative econometrics takes a novel approach to empirical research. We begin by analyzing a
sample statement to introduce the concept before working through a specification. The examples
below are intentionally minimal to highlight the differences from a traditional bottom-up approach.
While they may not fully showcase the potential of working declaratively or the variety of tools
currently available in Foghorn, they still offer valuable insights. We remind readers that, although
these examples focus on corporate finance, declarative econometrics is a general framework
applicable across all areas of the social sciences. We provide a more formal definition of declarative
econometrics in Section 3.
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2.1. An Illustrative Declarative Econometric Statement

Assume that a researcher wants to compute a market-to-book ratio for research on financial
markets. The ratio requires two variables from the Center for Research in Security Prices (CRSP)
monthly stock data, shares outstanding (Crsp.shrout) and share price (Crsp.prc), both of which
are indexed by a permno cross-sectional firm identifier and a trading-date time-series identifier.7

It also requires the book value of total assets variable (Comp.at) as of the fiscal year-end from the
Compustat Fundamentals Annual data, which is indexed by a gvkey cross-sectional identifier and
a datadate fiscal-year-end time-series identifier. Computing a market-to-book ratio in a bottom-
up data manipulation language requires writing code to convert gvkey – datadate assets to a
corresponding permno – trading-date asset time series. Then, an algebraic step does the actual
calculation. The resulting code emphasizes the steps, rather than the algebraic relationship. It
would generally be verbose, requiring many lines of precise table joins to transform the underlying
data indices before the final algebraic step that computes the market-to-book ratio.

In a declarative language, the index conversion and calculation may be written in a single step.
This calculation in Foghorn is coded as

Crsp.shrout × Crsp.prc / reindex(Comp.at). (2)

This top-down calculation emphasizes the underlying economic meaning by using a simple reindex
function to tag which panel variable should have its indexes converted. The benefits of such succinct
coding syntax grow exponentially with variable complexity.

Foghorn can convert this top-level equation into bottom-up data manipulation code because
it knows the indices of each variable (i.e., cross-sectional, time-series, or panel) at the language
level, a feature known as static typing in programming language design. In the expression above,
Foghorn identifies that Crsp.shrout and Crsp.prc are both indexed by permno-trading-date. Thus,
their product is also indexed by permno-trading-date. Foghorn also knows Comp.at is indexed by
gvkey-datadate. Therefore, because Comp.at divides Crsp.shrout × Crsp.prc, Foghorn infers that

7The term “indexing” refers to index variables, unique identifiers for individual observations within a dataset.
These identifiers may be cross-sectional and/or time-series units. The term “reindexing” describes the procedure
of aligning identifiers across different datasets, accurately matching an observation from a source dataset with its
corresponding observation in a target dataset.
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the reindex function must convert Comp.at from gvkey-datadate to permno-trading-date using a
programming language feature known as type-inference.

2.2. An Illustrative Declarative Econometric Specification

Consider a research project to analyze the effect of entrenched corporate boards on stock returns
around acquisition announcements. The study will control for both the acquirer’s and the target’s
Tobin’s q. To keep this example concise, we will not include additional controls, time-constant or
firm-constant fixed effects, or sample selection criteria. We will also not adjust or cluster standard
errors. All these features are available in Foghorn, which also allows for organizing empirical
datasets by any cross-sectional and/or time-series indices.

Figure 1 shows the complete econometric code for implementing this empirical study in Foghorn.
For brevity, we have omitted boilerplate statements that import Foghorn libraries.

Figure 1: Example Declarative Econometric Specification
1 study = estimate
2   [regHdFe| car ~ bcfIndex + acquirerTobinsQ + targetTobinsQ |]
3
4 -- Cumulative abnormal returns
5 car = acquirer $ cumulativeAbnormalReturn (-2, 2)
6         `overModel` singleIndexModel (-210, -11) CrspEqualWeighted
7
8 -- Entrenchment index (Bebchuk, Cohen, and Ferrell (2009))
9 bcfIndex = acquirer 

10
  (Risk.cboard + Risk.labylw + Risk.lachtr + Risk.gparachute + Risk.supermajor +

Risk.ppill)
11
12 -- Firm value
13 acquirerTobinsQ = acquirer tobinsQ
14 targetTobinsQ = target tobinsQ
15 tobinsQ = (Funda.at - Funda.ceq + reindex (Msf.shrout * Msf.prc)) / Funda.at

The sample code in Figure 1 differs noticeably from traditional bottom-up data management and
econometric estimation techniques. Perhaps most strikingly, it is concise and direct. The code
comprises only nine lines of statements; the remaining six lines consist of white space and com-
ments. The specification requires only variable definitions, a functional form between dependent
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and independent variables, and the estimation technique. This code emphasizes the “what” of this
empirical study, providing only the econometric definitions required to describe the specification.

Unlike traditional bottom-up research techniques, the declarative specification is reasonably
self-evident.8 An interested third party does not need to review a step-by-step data manipulation
process to understand the econometric methodology. Instead, this declarative specification begins
with a top-down statement indicating that this study estimates a single regression model. The
model’s functional form specifies that observed cumulative abnormal returns are related to a
hypothesized linear relationship among the acquiring firm’s corporate board entrenchment index,
the acquiring firm’s market-to-book value ratio, and the target firm’s market-to-book value ratio.9

The code then defines the variables in the model. The acquirer’s cumulative abnormal return
(CAR) is calculated over a five-day window, starting two days before and ending two days following
the announcement. This calculation utilizes the CRSP Equally Weighted Index as a single index
market model, with parameters estimated over a window beginning 210 days before and ending 11
days before the announcement. The Entrenchment Index (Bebchuk, Cohen, and Ferrell 2008) for
the acquirer is the total of six indices from RiskMetrics (Risk): classified boards (cboard), limited
ability to amend bylaws (labylw), limited ability to amend charter (lachtr), golden parachutes
(gparachute), supermajority requirements (supermajor), and poison pills (ppill). Finally, the
acquirer’s and target’s Tobin’s q (lines 10 and 11, respectively) are built upon a general definition
in line 12. This uses the book values of assets (at) and common equity (ceq) from Compustat
Fundamentals Annual (Funda) data as well as stock price (prc) and shares outstanding (shrout)
from the CRSP Monthly Stock File (Msf).

The specification’s required data sources, including Compustat, CRSP, RiskMetrics, and SDC,
are prominent in the specification.10 Each of these employs different indexing variables to uniquely
identify observations. While verbose data manipulation steps that convert variables across indices

8We recognize that the language has some notational idiosyncracies (e.g., the dollar signs and back ticks), which
arise from our decision to implement Foghorn as an embedded domain specific language. More information is
provided in Section 4, with further details in the companion technical paper (Tumarkin 2025).

9We have borrowed notation from R for estimators as we believe the use of algebraic operators makes the functional
form clear.

10Unlike Compustat, CRSP, and RiskMetrics which have the explicit prefixes Comp, CRSP, and Risk, respectively, SDC
data is referenced implicity by the cumulativeAbnormalReturn, acquirer, and target functions.
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often comprise a substantial portion of code in traditional econometric work, they are noticeably
concise in Figure 1. The acquirer and target functions attribute data to the respective parties of
an acquisition.

2.3. Declarative Econometrics and the Bottom-Up Process

High-level declarative code, such as in this section, may seem insufficient for implementing an
econometric study, particularly because there does not appear to be any bottom-up steps. Recall that
in declarative econometrics, the researcher defines the empirical specification, with the language
determining the implementation. Thus, an econometric study is well-defined provided the language
has sufficient information to convert the specification into a database construction process. Foghorn
translates top-down specifications into standard database code, a process known as transpiling.¹¹
Foghorn analyzes the specification, determines the order in which to perform algebraic, aggregat-
ing, reindexing, time-shifting, and other calculations, and generates all the necessary database
code for the researcher. For example, in Equation 2, Foghorn checks if this conversion is allowed
(user-defined permissible index conversions through modules), and, upon execution, generates
the appropriate bottom-up code in SQL or SAS, for instance.¹² Transpilation converts functions in
Foghorn into their data manipulation equivalents. As will be discussed later, the design decision to
provide transpiling has numerous benefits, particularly in terms of transparency.

We anticipate that many readers will understand the main ideas behind writing top-down
specifications, but be curious about the mechanics underlying how declarative code operates.
How can a declarative econometric language conduct an econometric test without bottom-up data
manipulation steps? How can the specification work without explicitly describing how observations
are matched between datasets? Does the brevity of declarative code limit its applicability across

¹¹Transpiling is a new concept to econometrics, but is an established technique in programming languages to
add static type constraints to non-statically typed languages. For example, JavaScript is a weakly typed language,
making it relatively easy for programmers to include bugs in web applications. Languages such as TypeScript and
PureScript provide type safe languages for web development. These languages transpile to JavaScript, eliminating
many classes of errors. Foghorn employs transpilation in a similar fashion, eliminating many types of errors in
econometric coding. Foghorn has a plug-in architecture for transpiling, allowing it target different data manipulation
languages. It currently has a SQL and STATA transpiler. SAS transpiler is under development.

¹²We note that, while it would be labor-intesive to convert the the market-to-book ratio into a panel variable
indexed by gvkey-datadate in a standard data manipulation language, it is trivial to do so in a declarative language.
One simply applyies the reindex function to the CRSP variables instead: reindex (shrout × prc)/ at.
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the social sciences? We will address these questions and explore how declarative econometrics can
enhance replication, transparency, and stress testing in Section 4. Before doing so, we first develop
a formal definition of declarative econometrics.

3. A Declarative Language for Econometrics

A declarative econometric language enables researchers to write high-level, top-down specifications
and convert them into data manipulation processes and estimation procedures. For our purposes, an
econometric specification, 𝒮, fully defines an empirical methodology, including variable definitions,
the modeled function form, and the estimation technique. Notably, our definition of a specification
does not include the steps required to transform raw data into a dataset used for estimation, which
we collectively refer to as an empirical procedure, 𝒫.

Formally, a declarative econometric language ℒ consists of two components. First, the language
has a notation system 𝒩 that provides syntax and semantics for describing high-level econometric
specifications. Second, an implementation ℐ exists that algorithmically converts a specification into
an empirical procedure (i.e., the data processing and estimation procedure):

ℐ : 𝒮𝒩 ⟶ 𝒫, (3)

where 𝒮𝒩 denotes a specification 𝒮 written in notation system 𝒩. Thus, a declarative econometric
language ℒ is the pair of the notation and the implementation:

ℒ = {𝒩, ℐ}.

For example, consider an ordinary least squares regression where the researcher wishes to
examine how cumulative abnormal stock returns relate to the market capitalization of the acquiring
firm. The specification 𝒮 consists only of the variable definitions, the linear functional form, the
choice of OLS as the estimator, the sample selection criteria, and the choice of standard errors. The
corresponding procedure 𝒫, by contrast, must define the steps that construct cumulative abnormal
returns, market capitalization, and other control variables from raw data. The empirical procedure
links observations across datasets, combining the data into a final dataset, and estimating the
parameter vector on that dataset.

In standard research, the specification consists of the information described in the research
paper. The procedure is the complete implementation code from raw data. Due to commercial and
proprietary data restrictions, authors may not be able to provide the whole procedure to other
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researchers, even in online form. Instead, code may start with pre-processed data to satisfy licensing
restrictions.

While the specification and procedure are related, they have traditionally been expressed
in fundamentally different formats. Specifications are described qualitatively in a paper’s text,
whereas procedures are implemented in code, leaving no formal link between the two. As a
result, errors in the procedure are not visible in the specification. The absence of a programming
language for specifications underlies this disconnect. A declarative econometric language resolves
the problem by allowing the researcher to state the specification directly, with the implementation
translating this high-level description into the complete empirical procedure.

3.1. Declarative econometrics notation

The notation system 𝒩 needs to allow researchers to describe a specification’s variables, functional
form, and estimation technique. It should form a complete algebra whereby different types of
operations may be composed transparently through a uniform syntax. Consider, for example, the
computation for the acquirer’s Tobin’s q from Figure 1. We could combine the acquirer function
(line 13) with the Tobin’s q formula (line 15), yielding:

acquirer $ (Funda.at - Funda.ceq + reindex (Msf.shrout * Msf.prc)) / Funda.at.

This single statement exemplifies the concept of a complete algebra, where different types of
operations are composed through a uniform syntax, and it is valid Foghorn code. This statement
instructs the language to reindex the CRSP data (prefixed by Msf) to work with Compustat data
(prefixed by Funda), perform algebraic operations with the reindexed CRSP data and Compustat
data, and match the result with the acquiring firm in SDC. We could even aggregate Tobin’s q across
the acquirer’s peer firms or compute lagged annual averages, for example, in a single statement.

This complete algebra is a key feature of a declarative econometric language’s notation system,
providing succinct, top-down semantics to define variables. Operations such as arithmetic, data
aggregation, index conversion, data merging, time transformations, and other necessary data
manipulation tasks work in harmony. Whereas existing packages let researchers manipulate data
through a series of steps, they isolate different types of operations. Index conversion semantics
may differ from those used in data aggregation. And, it is generally not possible to chain index
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operations of various types together. By contrast, a declarative language provides a way to compose
such operations, compactly describing every test variable in terms of raw data.

The notation system also provides semantics to describe estimators. Most software packages
already use declarative syntax to define. For example, in SAS, Stata, or R, the researcher uses
a command to describe the specification but does not instruct the package on how to perform
the required computations. Researchers, for example, generally do not concern themselves with
the matrix inversion algorithms needed for most econometric models. A declarative econometric
language’s notation system should be no different. The estimator description parameterizes the
estimation method, such as the technique (e.g., OLS, GMM), dependent variables, explanatory
variables, and standard error calculations.

While the estimator description in a declarative language is syntactically similar to that in
standard econometrics packages, it is functionally more powerful. A declarative language enforces
a whole-specification approach to writing econometric tests. As detailed in Section 4, declarative
econometrics elevates econometric information from the data to the language. The language’s
compiler can then reason about a specification logically as a whole, rather than evaluating a
specification simply as a sequence of programming steps. Compiler reasoning is one factor behind
the validity of the code in Figure 1, even though the functional form appears before the variable
definitions. A declarative econometric language validates that a specification is internally consistent
before execution. A functional form is not valid unless the variables it requires are defined and
have identical indexing. The language ensures that all operations that comprise variable definitions
are correct, and it can infer desired data transformations (as described in the introduction). The
language’s ability to ensure specification integrity has clear benefits for writing econometric tests,
in general. However, the power of language-level integrity checking is particularly evident in stress
testing.

3.2. Empirical Procedure

The declarative language implementation ℐ converts the empirical specification 𝒮𝒩 into the
empirical procedure 𝒫. The empirical procedure can be seen as a mapping from the universe of
raw data, 𝒟0, to an estimated parameter vector, 𝜃:

𝒫 : 𝒟0 ⟶ 𝜃.
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Without loss of generality, we consider the implementation of empirical specification to consist of
two broadly defined steps. First, a data manipulation (generation) process, ℳ, transforms raw data
into the processed data required for estimation. Second, an estimation procedure, ℰ, computes the
coefficient vector, standard errors, and other statistics of interest from the processed data.

Let the data manipulation process ℳ have 𝑛 steps. Notate the data after 𝑖 steps as 𝒟𝑖. An
individual step, ℳ𝑖, in that data process transforms the data from 𝒟𝑖−1 to 𝒟𝑖,

ℳ𝑖 : 𝒟𝑖−1 ⟶ 𝒟𝑖.

The cumulative process ℳ : 𝒟0 ⟶ 𝒟𝑛, which converts the raw data into the final data needed for
estimation, is the sequential composition of the individual steps:

ℳ = ℳ𝑛 ∘ ℳ𝑛−1 ∘ … ∘ ℳ2 ∘ ℳ1.

We note that mathematical composition associates to the right – the rightmost transformation is
applied first, followed by those to its left.

Finally, the estimation procedure ℰ maps the final data into the coefficient vector:

ℰ : 𝒟𝑛 ⟶ 𝜃.

Thus, we can view the empirical procedure 𝒫 as the composition of the estimation procedure and
the data manipulation process:

𝒫 = ℰ ∘ ℳ. (4)

3.3. Stress testing

Stress testing an economic literature is a principal innovation from declarative econometrics. Stress
testing a literature is fundamental different than performing robustness tests on an individual paper.
While a robustness test typically examines a paper’s assumptions that differ from common practice,
literature-level stress testing examines the assumptions that underlying common practice. A stress
test 𝒯 may be considered a transformation of a base empirical specification 𝒮 to a new one, 𝒮′:

𝒯 : 𝒮 ⟶ 𝒮′. (5)

Researchers have not yet developed a systematic approach for literature-wide stress testing. Such
stress tests must be scalable both in the range of tests they can accommodate and in their ability
to apply those tests consistently across specifications. Equally important, they must ensure correct-
ness, regardless of stress-test complexity.
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3.3.1. Stress Testing with Existing Technologies

With existing technologies, researchers cannot manipulate the specification directly as per Equa-
tion 5. Instead, they must work with the data manipulation and estimation procedures that together
comprise the empirical method.

A manual approach follows traditional economic practice: the researcher applies a stress test
transformation to an original procedure 𝒫, derives the stressed procedure 𝒫′, and constructs the
corresponding data-management process ℳ′ and estimation procedure ℰ′. While feasible for a few
stress data-generating and estimation processes, this strategy does not scale; the effort required to
stress test a literature increases multiplicatively with both the number of tests and the number of
projects, and remains vulnerable to human error.

Alternatively, a researcher may pursue a procedural approach, directly modifying the data-
manipulation process and estimation procedures:

𝒯ℰ,𝒫 : ℰ ∘ ℳ ⟶ ℰ′ ∘ ℳ′.

This strategy will not be effective across empirical procedures. Procedures are typically imple-
mented as bespoke data-manipulation processes and estimation procedures, with coding choices
varying across papers. A modification that applies to one implementation is unlikely to translate to
another.

Furthermore, this process is unlikely to succeed even when procedural implementations share
steps. Consider two procedures 𝒫𝒜 and 𝒫ℬ, with corresponding data manipulation processes ℳ𝒜

and ℳℬ. Suppose both data manipulation processes contain a common step ℛ that appears
somewhere in the data manipulation pipelines: 𝑅 ≔ ℳ𝒜,𝑖 = ℳℬ,𝑗. Function composition, however,
suggests that the role of ℛ within procedure 𝒜 need not match its role with procedure ℬ. Conse-
quently, knowing that a stress test 𝒯ℰ,𝒫 correctly transforms 𝒫𝒜 into 𝒫𝒜′  does not imply that it will
do the same for 𝒫ℬ, even if the two procedures share steps:

𝒯ℰ,𝒫 : 𝒫𝒜 → 𝒫′
𝒜 ⇏ 𝒯ℰ,𝒫 : 𝒫ℬ → 𝒫′

ℬ.

Like manual stress testing, the procedural approach is neither scalable nor reliable, underscoring
the need for a systematic framework.
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3.3.2. Declarative Stress Testing

Declarative econometrics offers an alternative, scalable approach to creating correct stress tests.
Recall that in declarative econometrics, a researcher is working with specification descriptions, not
the data manipulation process and estimation procedure. A declarative language can permit direct
specification manipulation, providing a way to write stress tests in terms of modified specifications
directly:

𝒯𝒮 : 𝒮 → 𝒮′.

The ability to transform specifications retains the descriptive style of the declarative econometrics,
focusing on variable and estimator definitions, and occurring within the standard language without
the need to resort to macro-programming or similar techniques.

Recall that the language implementation converts a declarative stress test into our desired
modified data manipulation process and estimation procedure. Thus, an implementation can take
the specification that arises from a stress test and determine the correct procedure:

ℐ ∘ 𝒯𝒮 : 𝒮𝒩 → 𝒫′ = ℰ′ ∘ ℳ′ for all 𝒮𝒩.

This approach has numerous benefits. First, it is straightforward to conceptualize stress tests based
on specifications. The researcher needs only to consider the econometrics of the test, determining
the necessary changes to variable definitions and the estimator required for the stress test. By
contrast, a stress test that manipulates bottom-up data processes and estimation procedures is more
complicated to write, as one needs to consider the role of each step in the data pipeline.

Second, declarative stress testing emphasizes correctness of transformations, avoiding the
function composition and bespoke code pitfalls associated with traditional methods. The whole-
specification approach embedded within declarative econometrics means that, not only can the
language reason about specifications, but it can also reason about stress test transformations. As a
consequence, it can ensure that, given any declarative specification, the stress test transformation
will return a valid modified version of the specification. Such transformations are called total
mapping, also known as total function, and the language itself checks to ensure that all stress test
transformations meet this criterion.¹³

¹³A stress test may be inherently incompatible in certain empirical settings. For example, a stress that lags
explanatory variable by a year would be incompatible with a cross-sectional dataset lacking a time dimension. Such
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Finally, scalability is a natural consequence of declarative stress testing. Total functions ensure
that a declarative stress test can be applied across specifications. The implementation can transform
any stressed specification into the corresponding stressed data manipulation process and estimation
procedure. The stress tests themselves are scalable. As transformation functions, stress tests can
be combined through functional composition. Thus, it is possible to build a complicated stress test
from multiple simple tests. The language itself will guarantee that the derived, stressed specification
is valid, and it will provide the corresponding bottom-up data processing process and estimation
procedure.

4. Implementing a declarative econometric language: How this works

Traditional econometric code embodies a form of dramatic irony; the researcher has information
about the data that the programming language does not. For example, a researcher will know that
share prices are represented as floating-point numbers, while ticker symbols are represented as
text. However, a statement adding the two (i.e., price + ticker) is syntactically valid in SQL,
SAS, and other data manipulation languages. The language will only recognize the error when
the code is executed against the data. This inability of traditional data manipulation languages
to reason about the data before execution significantly inhibits their ability to write expressive,
succinct econometric specifications.

Declarative econometrics bridges the knowledge gap between the researcher and the computer
by enabling the language to reason about a specification before execution, that is, as the researcher
develops the specification. The Foghorn source code defines all functions and operations at two
levels. The “type level” describes rules that the variables involved in a function must satisfy. These
rules can embed logic using cross-sectional indices, time-series indices, data types, and other
variable-specific information. The “term level” implements the actual function or operation. For
instance, Foghorn implements algebraic addition similarly to most programming languages at the
term level. However, its type-level rule stipulates that the operands must have identical cross-
sectional and/or time-series indices and be of numeric data types (i.e., information that can be
added). Thus, adding a numeric share price to a textual ticker symbol is forbidden.

incompatibility can be handled elegantly by total functions within a declarative language. Details are provided in
the companion paper (Tumarkin 2025).
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It is the ability to encode logic about the data that makes declarative econometrics powerful,
expressive, and succinct. Returning to Figure 1, verbose data manipulation steps to convert vari-
ables from one set of indices to another are noticeably absent. However, while some programming
languages achieve syntactical succinctness by ignoring information about the data, this declarative
econometric code achieves simplicity for the opposite reason: it can reason about the data. Foghorn
would not let a researcher combine CRSP data with Compustat data to compute Tobin’s q without
explicit reindexing. Moreover, the reindex function does not require detailed instructions, as the
language can determine and validate the necessary conversions.

Declarative econometrics offers a general framework applicable across all social science disci-
plines. At its core, declarative econometrics elevates econometric information from the data to the
language. However, the approach does not achieve this by restricting the datasets with which it
can work. Foghorn’s core is database-agnostic, defining general rules that validate relationships
among specifications and variables. Dataset-specific information enters the language through topic
modules. For example, the corporate finance module, Coficat, provides information about many
finance datasets.14 Users may write modules targeting specific research areas and extend the
language’s capabilities.

Foghorn will be publicly available for use by econometric researchers. However, we recognize
that other researchers may write new modules for Foghorn or create other declarative econometric
languages. Therefore, when describing how Foghorn operates, we emphasize those features that
make a declarative econometric approach viable. A complete technical discussion on the design
and implementation of the language is beyond the scope of this paper. Details are provided in the
companion paper (Tumarkin 2025).

4.1. Embedded domain-specific language

Instead of writing a declarative language from the scratch, we believe it is best to leverage existing
technology with an embedded domain-specific language (EDSL). An EDSL operates within a host
language, serving as a dialect that facilitates specific tasks. The EDSL allows a programmer to revert
to the host language when necessary. Therefore, a declarative econometric EDSL can offer data

14Coficat is tortured wordplay for a co-rporate fi-nance research copy-cat tool.
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manipulation and estimation tools based on a precise top-down specification while preserving the
full capabilities of the host general-purpose programming language.

We implement Foghorn as an EDSL within Haskell, a language that has strong support
for declarative programming. Foghorn is designed for social science researchers to use without
requiring knowledge of Haskell. As exemplified by the sample code in Figure 1, most specifications
can be written in a syntax similar to existing econometric packages with the addition of algebraic
constructs to define variables.15

Haskell’s many unique features make it a desirable host for a declarative econometric EDSL.
These include, but are not limited to, lazy evaluation, general algebraic data types, recursive data
types, higher-order functions, abstract type classes, and dependent types. However, a technical
discussion of the advantages these features provide for a declarative econometric language is
deferred to the companion paper (Tumarkin 2025).

Most notably, for this discussion, Haskell code exists at both the term level and the type level.
This separation is a key aspect of Haskell’s powerful and expressive type system. Most people are
familiar with what Haskell considers the term-level, which, in traditional languages, is where the
steps of a function are performed. The type-level in Haskell is a unique environment that can be
extended to embed logic. Working at the type-level, one can describe intricate relationships among
the inputs to and the output from functions. Foghorn uses this to analyze, validate, and infer critical
aspects of econometric specifications.

4.2. Encoding econometric logic (Database agnostic reasoning in the core language)

Foghorn is designed to be usable across the social sciences. Thus, it contains a “core” language that
emphasizes general econometric logic, lacking information about a specific data set or research
area. Foghorn’s core provides the building blocks of econometric analysis, including specification
design, algebraic calculations, data aggregation, data merging, and other common operations. By

15Foghorn is an open-source programming language that accepts contributions that identify issues, fix bugs, and
expand its scope. While Foghorn is intended to be used for econometric research without learning Haskell, under-
standing the source code of the core language requires intermediate to advanced Haskell. This is not uncommon
in programming languages where the language’s source code is often far more complicated than programs written
in the language. For example, many Python users would have trouble working through the source to Python’s most
popular implementation, CPython, which is not written in Python but C.
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tracking index and data type information, the core can to achieve a level of concision that is not
possible when a language lacks such information.

A declarative econometric language like Foghorn needs to reason about the data. In program-
ming language design, this ability is most powerfully expressed through type-level logic. In Foghorn,
each variable is declared with type-level information about its indexing variables 𝑖 (i.e., cross-
sectional and/or time-series indices) and data type 𝑑 (e.g., integer, floating-point number, text). We
notate a variable as Var i d, where, for example, CRSP stock share price would be declared at the
type-level as Var (Permno, TradingDate) Float. Variables carry this type-level information around
in the code, with the language tracking and reasoning about types throughout the specification.

All operations and functions in Foghorn contain “type signatures” that define rules about the
relationships among input variables and output at the type level. Type signatures are declared as

Constraints => Input 1 -> Input 2 -> … -> Input N -> Output.

Functions may include any number of constraints and inputs, with only the output being mandatory.
For example, the type signature for addition, subtraction, and multiplication is written as:

Numeric d⏟⏟⏟⏟⏟
Constraint

=> Var i d⏟
Input 1

-> Var i d⏟
Input 2

-> Var i d⏟
Output

.

The type constraint, Numeric d, is left of the double-arrow and indicates that the data type d must
be numerical. On the right-hand side, there are two input variables and an output variable, each
of type Var i d. Foghorn can reason that these operations are valid only when the input share
indexing identifiers i and a numeric data type d is used, and the result is a new variable of the
same indexing and data type.

Rules in Foghorn are often written using type-level variables (a language feature called paramet-
ric polymorphism) instead of specific indices or data types.16 The above example has two type-level
variables, i and d. Type-level variables ensure that rules are as general as possible, and Foghorn can
apply them to any dataset. Foghorn has a rich, extendable list of data types that enable it to precisely
reason about econometric specifications. For example, many kinds of economic data are stored as
integers. These include standard industry classification (SIC) codes, fiscal years, calendar years,

16Type-level variables are distinct from term-level variables. Term-level variables express values, permitting the
language to manipulate values. Type-level variables express types, permitting the language to reason about type
information.
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many identifiers (e.g., CIK, permno, and gvkey), and actual integer numbers. Foghorn separates
these into separate types. The function to compute Fama-French industry classifications (Fama and
French 1992) will only work with SIC codes. Arithmetic operations are only supported for types
where the operations make sense (e.g., addition of SIC codes is not permitted).

Type constraints may be of arbitrary complexity due to Haskell’s support for advanced program-
ming at the type level. Yet, Foghorn does not require that users worry about type-level programming.
Foghorn inherits Haskell’s ability to infer types. For example, consider the reindexing function which
has the type signature:

Reindexable i i’ => Var i d -> Var i’ d

The type constraint Reindexable i i’ defines a type class. A source index variable set i is paired
with a target one i’ in Reindexable only when a variable indexed by observation identifier i can be
transformed into one indexed by identifier i’. Type inference means that Foghorn can contextually
determine the target indexing variables from reindexing. For example, assume we have variables
a and b indexed by i and i’, respectively. Type-inference ensures that the expression reindex a
+ b is fully defined. Foghorn knows the source indexing for a (each variable carries information
about index type), and it can infer the target indexing from b on the other side of the addition
operand. This expression is validated provided that the index type pair i and i’ are an instance of
Reindexable (and that the underlying data types permit addition).

4.3. Modularity (Database specific information through topic modules)

Foghorn uses a plug-in module system to target different branches of econometric literature. In
Foghorn, modules must define the data sets available for a literature and the conversions among
variable indices .17 This approach ensures that a declarative econometric language is not tied down
to any specific econometric methodology. For example, one module may link firm financial data to
stock return data based on what data was publicly known to the market (i.e., the firm’s financial
data relevant to a specific market observation is from the most recent data published by the
company). Another module may use contemporaneous data (i.e., the firm financial data is linked
to any return data that occurs during the corresponding fiscal year). A third module may provide

17Common data sets used in finance are already in Foghorn. Additional types of data sets, both within Finance
and in other areas of the social sciences, will be added to the core distribution over time. However, users are not
restricted to the core datasets and may implement their own.
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both options, requiring the econometrician to specify the linking method explicitly. A fourth module
may not allow such index conversions to occur directly.

A module consists of two pieces: a standardized database and its Foghorn code. The database
is topic-specific, providing an standard against which empirical specifications may be executed. It
contains the datasets commonly used in the research area and tables, or other rules, to link those
datasets. A module’s database serves as a foundation, it does not contain processed data, leaving
calculations to the transpiled code generated by Foghorn.

The Foghorn code serves as the second piece of the module. The code provides information
about the database, such as the data sources, variables, index information, and permissible index
transformations. This information is used by the core language when analyzing specifications and
transpiling. Modules can provide topic specific functionality. Foghorn provides a clean way to
compose base-level functions into succinct module-level ones. Haskell is a functional programming
language, meaning that functions, not objects, are the primary units of programs. Functions are
composed simply by using a “dot” operator (i.e., the mathematical definition of composition ℎ =

𝑓 ∘ 𝑔 is translated literally yielding h = f . g. Thus, it is simple to write module-level functions
that address common problems in a specific economic literature by composing the building blocks
provided by the core.

4.4. Transpiling

Foghorn translates top-down specifications into standard database code, a process known as
transpiling. While new to econometrics, transpilation is an established technique in programming
languages to add type-safety, enhance abstraction, and add concision to non-statically-typed
languages. For example, there are many web-development languages for type-safe, high-level web
development that transpile to Javascript, thereby preventing errors and making it easier to write
modular code. Foghorn similarly employs transpilation, eliminating many types of mistakes in
econometric coding.

Transpilation ensures that a declarative econometric language does not constitute a closed
system. Having another tool for bottom-up data manipulation would not achieve our objectives
for literature-level stress-testing and bi-directional transparency. There are numerous established
methods for manipulating data and estimating econometric models. Foghorn utilizes a plug-in
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architecture for transpiling, allowing it to target various data manipulation languages. Users can
pick the transpiler needed for their preferred target language. Foghorn currently has a SQL and
STATA transpiler, with a SAS transpiler under development.

Foghorn uses a simple approach to transpilation. Foghorn analyzes a specification and deter-
mines the basis set of variables underlying the required estimation panel. This basis set includes
final variables used in estimation, intermediate variables needed for calculations, and source
variables. It then categorizes the variables into two groups based on whether the variable has been
computed. Source variables are placed into the computed group; intermediate variables and final
variables are placed into the uncomputed group. For each uncomputed variable, it checks if all
its basis variables are in the computed set. If so, that variable is calculated and placed into the
computed group. On iteration, all variables are eventually moved from the uncomputed group to
the computed group. In summary, foghorn analyzes the specification, determines the order in which
to perform algebraic, aggregating, reindexing, time-shifting, and other calculations, and generates
all the necessary database code for the researcher. In other words, transpilation converts functions
in Foghorn into their data manipulation equivalents.

Transpilation provides several benefits. The most clear advantage of transpilation is leveraging
existing tools. Thus, a declarative approach can incorporate any data process or econometric
estimator from any software package. One only needs to define a declarative syntax for a new
process or estimator and then write a corresponding transpiler. Declarative econometrics is unique
in that it defines the complete estimator at the specification level. By creating a direct link between
specification and implementation, and then allowing researchers to manipulate specifications, new
types of economic research become possible.

Transpilation greatly improves econometric transparency. Data manipulation languages are
generally verbose, requiring hundreds if not thousands of lines of code to implement a standard
economic paper. A person reviewing such code may suffer from information overload, failing
to identify critical assumptions. A declarative specification, on the other hand, is concise and
emphasizes the logic of any empirical study. Key assumptions form the basis of the declarative
code, with implementation details provided in the transpiled, step-by-step data manipulation code.

25



For example, Foghorn has an SQL transpiler that exports a specification into the step-by-step data
generating-process.

4.5. Whole-specification coding (Benefits and disadvantages)

Declarative econometrics promotes a whole-specification approach to econometrics. As the
language can reason about a specification through type-level logic, the estimator definition is
intertwined with the variable definitions. There are several benefits of an approach where an
empirical researcher can focus on specification design instead of implementation. Declarative
econometrics makes key assumptions explicit, improving empirical clarity and transparency. With
this,an empirical researcher can focus on specification design instead of implementation

Declarative econometrics is not intended to, nor should it, replace standard techniques. Datasets
are idiosyncratic and intimate knowledge is required for convincing empirical research. Thus,
there are significant advantages to researchers working directly with data from the bottom-up.
However, declarative econometrics makes new types of literature-level analysis possible, improving
our critical understanding of standard practices through stress testing and replication.

Finally, we note that declarative econometrics has some disadvantages. Foghorn requires
modules for specific topics. Creating a module requires building a standard database for the
topic and encoding the logic into a Foghorn library. Thus, declarative econometrics is best suited
to established topics where the upfront cost of writing a module can be amortized across paper
replication, stress testing, and new research questions. For a unique empirical question, standard
bottom-up techniques are better suited.

Moreover, declarative econometrics is not intrinsically designed to be efficient. Foghorn applies
sample selection as a last step. As a result, the transpiled code will perform computations over an
entire source dataset as it implements a study. It will compute variables that do not ultimately meet
sample selection criteria. This inefficiency is by design. Computing variables over an entire dataset
guarantees that the transpiled code will execute without crashing and generate the correct final
sample for estimation.

Foghorn is just one possible implementation of a declarative econometric language. Other
notation systems and implementations are possible. However, we believe the features highlighted
above are critical to enabling new types of research, particularly in the areas of stress testing.
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Further details about the notation system and implementation are in the technical companion paper
(Tumarkin 2025).

5. Replicating the M&A Literature

We employ our declarative econometric technique to stress test the merger and acquisition (M&A)
literature. M&A provides an ideal setting for stress testing, given the importance of M&A to
corporations. The literature is mature, having been extensively studied over an extended period,
and has established results across numerous papers. Papers draw information from a common
set of databases, and, although the event study methodology is an accepted framework, critical
assumptions vary across papers.

5.1. Sample selection

Our sample selection with papers published in the four journals with arguably the highest impact
factors in academic Finance: The Journal of Finance, the Journal of Financial Economics, The Review
of Financial Studies, and the Journal of Financial and Quantitative Analysis. We identify those
papers that analyze returns around M&A announcements, yielding 207 candidates for replication
published between 1983 and 2023. The early 1980s start of this period coincides with the nascent
academic empirical research into M&A documented by (Mulherin, Netter, and Poulsen 2017).
We eliminate studies with purely theoretical contributions and those whose analysis is primarily
descriptive.

The inclusion criteria derive from both our replication and stress testing objectives. We first
impose a data requirement; we must have access to a paper’s data to replicate its results. The
candidate paper must use publicly available data, such as that from the Bureau of Labor Statistics
and academic websites, or commercially available data to which we have access. As a result, we
restrict our sample to papers that use the following commercial data providers: S&P Compustat,
Center for Research in Security Prices, Refinitiv Thomson, MSCI RiskMetrics, and SDC Platinum.

Stress testing at the literature-level is the examination of assumptions that underlie common
practice. Therefore, we select those papers that exemplify typical empirical specification design and
methodology. We limit our sample to those papers where (1) the benchmark analysis, as stated in
each paper, utilizes Cumulative Abnormal Returns (CARs) as the dependent variable and (2) the
primary estimation technique involves ordinary least squares or panel regressions. As we cannot
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stress test null results, we examine only those benchmark analyses that find a statistically significant
result with a coefficient in the direction hypothesized.

Finally, we have practical considerations that eliminate some papers from our sample. The paper
must describe the methodology well enough for us to replicate the key findings. In some cases,
the paper may not adequately define a variable, requiring that we make assumptions to replicate
the result. Examples include financial variable definitions and industry classification levels. In such
cases, we revert to definitions used by other authors in the literature. These replication assumptions
are documented in the online replication code.

After applying these criteria, our sample consists of 47 candidate papers. This dataset require-
ment restricts the candidate studies to those that examine M&A within the United States. It also
eliminates those studies that utilize proprietary or hand-collected datasets in their baseline findings.
The earliest papers in our sample use hand-collected data from the Wall Street Journal, Grimm’s
Mergerstat Review, and other sources. Thus, our candidate papers begin with those published after
2000, when data sources became more standardized.

5.2. Defining Replication Success

Academics currently lack consensus on what defines successful replication. We consider replication
to be the recreation of published results starting from raw data using a process derived from
the description in the published article. This process excludes code provided by the author, as
independent verification is necessary to ensure the accuracy of author-provided code.

It is probably not possible to replicate papers exactly. Data providers update information, often
restating historic data to improve accuracy (Ljungqvist, Malloy, and Marston 2009). Lyle, Siano,
and Yohn (2025) find that Compustat’s periodic “standardizations significantly alter key financial
figures such as sales and earnings, among many others, leading to material differences in research
findings.” Researchers also may elide essential steps in their data manipulation process, making
precise replication difficult. For example, authors generally do not precisely describe the process to
match observations across databases, especially with text-based matching. Authors may also omit
their process for dealing with missing financial data, such as research and development expenses.
Lyle, Siano, and Yohn (2025) assert that “precise replication of prior studies using common
Compustat products is nearly impossible.”
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Reproduction, as opposed to replication, is the independent execution of a study performed
using data and code provided by the authors. Reproduction should be easier than replication,
yet researchers have experienced difficulty reproducing results. Chang and Li (2022) attempt to
reproduce 67 macroeconomic papers. Defining success as one that produces the “key qualitative
results of the paper,” they can reproduce 33% of the sample without contacting the authors. Fišar
et al. (2024) assess the reproducability of nearly 500 articles in Management Science. A “fully
reproduced” paper is one in which the reproduction generates the exact numerical results as the
published article. A “largely reproduced with minor issues” paper is one in which the reproduction
has small differences from the published article. They find that only 45% of articles that voluntarily
provided data and code were reproducible before the journal’s 2019 institution of a data and code
disclosure policy.

We use similar qualitative criteria for replication. We consider a paper replicated when (i) the
replicated coefficient on the key economic variable examined in the paper has the same sign with
similar magnitude and statistical significance to the published result, and (ii) the replicated and
the published samples have a similar number of observations. While many of the control variables
are similar to those in published results, we do not concern ourselves with discrepancies due to the
issues highlighted above.

5.3. Replication Process

We replicate within foghorn, focusing on a single result examining cumulative abnormal returns in
the target paper. The specifications selected for replication are typically identified by the author as
a key result supporting the paper’s hypotheses. We use a single, principal result to keep the scope
of our replication manageable and to ensure that stress testing is comparable across papers.

We use the empirical methodology and assumptions as described by the authors to reimplement
a paper. In some cases, a paper may not provide sufficient detail. Common issues include the
handling of missing data, variable definitions, and sample selection. For example, many well known
financial variables are missing from Compustat (e.g., research and development expenses (Koh and
Reeb 2015)), and the authors may not indicate if they drop observations or replacing missing values
with zero or industry averages. In other cases, paper may not provide the individual variables used
to create a composite financial control (e.g., the components used to create a total debt control
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variable). Papers may also not include the market index or model estimation window used when
computing cumulative abnormal returns. Papers may also cite other research as a methodology
source without clarifying whether sample selection and other decisions from the source apply.

Fortunately, these elided assumptions generally have precedent in the literature. We use
common missing variable treatments, common variable definitions, sample selection, and other
criteria as necessary, selecting the assumptions that yield the replication closest to the published
result. Declarative econometrics is very helpful in efficiently systematizing this search process. For
example, acquirer market capitalization is a common control in the M&A literature and may be
sourced from Compustat, CRSP, and SDC in our sample of papers. If not specified, we can quickly
switch the source for market capitalization without having to worry about integrating the data into
the overall the data management process.18

5.4. Results

Table 1 summarizes the results for the papers that were successfully replicated. For each study, it
lists the key economic variable of interest and identifies the table and column of the replicated
specification. The table reports both the published and replicated coefficients, with significance
levels indicated by stars at the 1%, 5%, and 10% levels, and compares the number of observations
in the published and replicated tests.

Because we replicate a number of papers, we also provide a separate section, “Replication Ta-
bles,” located after the standard tables, that presents direct comparisons of all explanatory variables
between the published and replicated results. Within each table, coefficients are reported in the
same order as tabulated in the original publication, with the primary economic variable highlighted
in bold. We also include t-statistics, p-values, or standard errors as appropriate, consistent with the
original study.

Finally, many of these papers employ fixed-effect indicator variables, which require omitting
one unspecified category to estimate a constant. Consequently, published and replicated constants
are not directly comparable, and we do not report constants even when they appear in the original
tables.

18In foghorn, the acquirer function links source data to deal observations. Thus, we can simply slot in acquirer
Sdc.market_cap , acquirer (Crsp.prc * Crsp.shrout), and acquirer (Comp.prccF * Comp.csho) and the transpiler
creates the correct empirical procedure across database sources.
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The findings in Table 1 suggest that key results in published papers are generally replicable. In
16 papers of the 20 papers we have attempted to date, we generate coefficients on key economic
variables with comparable economic and statistical magnitudes.19 These replications suggest that
important findings in the literature exist in a common data-processing framework. Thus, the results
can be generated simultaneously; researchers do not need to impose paper-specific methodologies
and assumptions to reproduce each result.

We do not tabulate papers for which replication was unsuccessful. Failure to replicate does not
imply that the original results are not replicable. By applying a declarative approach to economics,
we aim to make all assumptions explicit, but the possibility of misinterpreting a paper’s method-
ology remains.

Literature-level replications can significantly enhance transparency. Beyond offering bi-direc-
tional transparency for individual papers, generating results within a shared data-processing
framework clarifies the empirical practices and assumptions applied across the literature. We now
assess the robustness of these results to variations in standard practice through stress testing.

6. Stress Testing the M&A Literature

We now perform two types of within-literature stress tests on the replicated results presented in
the previous section. These tests examine the robustness of each replicated paper’s coefficient of
interest by varying definitions of (1) independent variable definitions and (2) control variables
common across most of the papers. This will allow us to understand whether (1) researcher degrees
of freedom involved in the choice of an often seemingly innocuous variable definition or sample
specification leads to a significant variation in significance of coefficient estimates and (2) whether
this variation tends to favor the published specification (i.e. whether reported/replicated results
tend to be more significant than their within-literature stress tests).

For all stress tests, we study how the significance (t-statistics) of the variables of interest in each
paper vary across these stress tests. We define our primary measure, tstat_diff for each stress test
as the following:

𝑡𝑠𝑡𝑎𝑡_𝑑𝑖𝑓𝑓𝑖,𝑗,𝑘 = {
𝑏𝑎𝑠𝑒_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗 − 𝑠𝑡𝑟𝑒𝑠𝑠_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗,𝑘 if 𝑏𝑎𝑠𝑒_𝑡𝑠𝑡𝑎𝑡𝑖 > 0
𝑠𝑡𝑟𝑒𝑠𝑠_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗,𝑘 − 𝑏𝑎𝑠𝑒_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗 if 𝑏𝑎𝑠𝑒_𝑡𝑠𝑡𝑎𝑡𝑖 < 0

19We continue to work on replication and expand our sample of papers.
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where 𝑏𝑎𝑠𝑒_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗 is the replicated t-statistic for variable i in paper specification j, and
𝑠𝑡𝑟𝑒𝑠𝑠_𝑡𝑠𝑡𝑎𝑡𝑖,𝑗,𝑘 is the t-statistic for variable i in paper specification j and stress k. tstat_diff will be
positive when the magnitude of the replicated t-statistic is greater than the magnitude of the t-
statistic of the same variable in the stress test (i.e. the replicated t-statistic is more significant than
the stress test’s t-statistic). tstat_diff less than zero can be thought of as conservative (the alternative
definition in the stress test produces a larger, or more significant t-statistic than the replicated t-
statistic of the specification found in the published paper) and tstat_diff greater than zero can be
thought of as aggressive (the replicated t-statistic of the reported specification in the published
paper produces a larger, more significant t-statistic than the stress test).

6.1. Dependent variable stress testing

To perform stress testing on independent variable definitions we rely on the chosen sample of
papers outlined in the section above and allow the definition and estimation of CARs in robustness
tests to vary along these lines This variation comes through three categories. First, we vary the
size of the CAR announcement window for each test along the following dimensions relative to the
announcement day: [−1, +1], [−2, +2], [−3, +3], [−5, +5], [−1, +5], [−5, +1], [0, +5], and
[−5, 0]. Second, we vary how abnormal returns are estimated: subtracting the expected return
from the daily raw return utilizing a single-index model (SIM) with equally weighted returns, an
SIM with value weighted returns, a Fama-French 3-factor model (FF3), a Fama-French 4-factor
model (FF4), and the equally weighted (OEW) and value weighted (OVW) market return (i.e.
assuming the beta of the single-index model is equal to one following Brown and Warner (1980)).
Third, we vary the expected return estimation period (for tests estimating the market return using
the SIM, FF3, and FF4) along the following daily windows relative to the announcement day:
[−205, −6], [−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and [−370,
−253]. These variations generate 238 to 336 stress tests per replicated paper, depending on the
specification.

6.1.1. Impact on the significance of variables of interest

We complete the stress tests described in Section 6.1 and compute the tstat_diff for each stress test
on each paper specification variable of interest. We focus on baseline replicated results from our
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sample of published papers where the coefficient on the variable of interest was predicted to be
significant. From our sample, this yields 15 specifications and 4,543 stress tests for variables of
interest. We report the results of these tests in Figure 1 and Table 7.

As can be seen in Figure 1, we document a significant dispersion of t-statistics by varying how
the dependent variable (CAR) is defined. As a reminder, a positive tstat_diff indicates the reported/
replicated t-statistic is larger in magnitude than the corresponding t-statistic for a given stress
test. As seen in Table 7, Panel A, the standard deviation of tstat_diff is 1.05. This shows that that
the definition of an independent variable can introduce significant variation in the significance of
coefficients on independent variables of interest. As can be seen in Figure 1, we also find that this
distribution is significantly skewed in favor of the published specification. As reported in Panel A,
of Table 7, the reported t- statistic is 0.67 larger than the median stress test t-statistic (i.e. this is
consistent with the reported t-statistic being a significant 2.20, while the stress test t-statistic is an
insignificant 1.53). Specifically, it shows that slight variations (found in the empirical literature)
in the definitions of the CARs creates significant variability in significance of variables of interest.
This evidence is consistent with the exploratory findings of Menkveld et al. (2024).

As reported in Table 7, Panel C, we find the replicated/reported t-statistic is larger in magnitude
than the stress test t-statistic (tstat_diff was positive) in 80% of stress tests (3,642 of 4,543). As
further reported in the panel, 53% of stress tests result in a drop in significance (i.e. moving from
a t-statistic indicating a 1% significance 2.4 to a significance of less than 2.326, or 5% significance
of lower) and 37% of stress tests lose significance (a t-statistic of less than 1.65). Finally, only 5%
of stress tests increase in significance.

It is possible that these findings are centered in highly significant results where the dispersion
will not impact the overall significance of the results. For example, the fact that a t-statistic is 1.0
higher in a reported/replicated result relative to a stress test is less meaningful when each are above
5.0. The evidence reported in Table 7, Panel C does not suggest this is the case, given that we find
53% of stress tests and 37% of stress result in a drop and loss of significance, respectively. However,
in Panel B of Figure 1, we restrict our analysis to replicated t-statistics that are less than 3 (where
a reduction of 1.05 would reduce the significance of an estimate from 1% significance to 10%
significance at best. As seen in the Panel B of the figure, we find similar evidence of dispersion and
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loss of significance in stress tests where the baseline reported t-statistic is less than 3. Table 7, Panels
A and B, reports the summary statistics of tstat_diff in this subsample, with a median of 0.56, a
mean of 0.60, and standard deviation of 0.76. Given the proximity to cutoffs for significance we see
an even greater degree of less significant stress tests in Panel C. While 78% of stress tests are smaller
in magnitude than the replicated/reported t-statistic, 64% of stress tests dropped significance, 46%
of stress tests loss significance, and still only 6% of stress tests increased in significance. Thus, it
does not appear that our findings are only found among highly significant results.

In untabulated robustness tests, we do not find that these results are driven by a specific stress
test or specific type of stress test. We find consistent evidence when we drop any specific stress test
(i.e. no stress tests have a [−5, 0] announcement window) or stress test type (i.e. do not allow
stress test CAR windows to vary but allow the estimation period or method to vary).

6.1.2. Impact on the significance of control variables

In Figure 1 and Table 7, we document that the significance of variables of interest are sensitive to
the variation of how CARs are defined within the literature, and that this variation tends to benefit
the reported specifications. However, the latter finding may be the result of our methodology. To
ensure that this is not the case, we perform the same procedure for control variables. Specifically,
using the same stress tests, we calculate tstat_diff for control variables rather than variables of
interest. We report these results in Figure 2 and Table 10.

As seen in Figure 2 and Panels A and B of Table 10, we still observe a significant amount of
variation in the t-statistics of control variables in stress tests relative to the replicated t-statistics.
As seen in Table 10, Panel A, the standard deviation of tstat_diff continues to be large (1.39) and
the skewness (1.35 vs. 1.26) and kurtosis (16.59 vs. 7.80) are even larger. This supports the notion
that the choice of definition of the dependent variable can introduce significance variation in the
significance of estimated coefficients on all variables). However, we no longer observe the degree
of aggressiveness with control variables that we observed with variables of interest. As reported
in Panel B of Table 10, the median difference between a replicated/reported t-statistic of a control
variable and the corresponding t-statistic from a stress test is 0.22 (relative to 0.67 for variables of
interest). This can be seen in greater detail in Panel B. We find that 61% of stress tests of control
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variables (versus 80% of variables of interest) were lower than the replicated/reported t-statistic.
Only 16% of stress tests result in a drop in significance (relative to 53% of stress tests for variables
of interest) and 12% of stress tests lose significance (relative to 37% of stress tests for variables of
interest). Finally, 11% of stress tests for control variables increase in significance (relative to 5% of
stress tests for variables of interest).

A t-test comparing the mean tstat_diff between variables of interest (0.775) and control vari-
ables (0.336) is highly significant (t-statistic of −20.720) and as reported in Table 13, a two-sample
Kolmogorov-Smirnov test for the equality of distributions shows that the distribution for tstat_diff
is significantly smaller for the control variables than for variables of interest. Taken together, these
results document evidence of significant sensitivity of variables of interest to within-literature
variation in CAR definitions. We document that t-statistics are significantly more skewed towards
significance in the published results relative to corresponding stress tests, where incentives for
significant results in publication are the strongest. We do not observe this same behavior (in terms
of skewness favoring published results) in the significance of control variable estimates, where
these publication incentives are less severe.

We have reported stress tests thus far in aggregate across all studies. However, a natural question
arises how much variation occurs within each study. To report this variation, we randomly order the
individual paper specifications and report histograms of tstat_diff for each specification individually
in Figure 3. As can be seen by the figure, some paper specifications are significantly skewed right,
while others are rather centered around zero. Importantly, we observe significant variation in t-
statistics for all specifications. Thus, while the selection of dependent variables tends to favor the
published version of specifications more in some specifications than others, all exhibit significant
variation and suggests that our evidence is not being driven by one outlying paper-specification. We
now turn to studying whether and how the definitions of independent control variables materially
impacts the significance of variables of interest.

6.2. Independent (control) variable stress testing

To perform stress testing on independent variable definitions we rely on the chosen sample of
papers outlined in the section above and allow the definition and estimation of two controls
common to the majority of the published studies in our sample: (1) market-to-book (Tobin’s Q) and
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(2) leverage. Similar to our analysis in Section 6.1, we vary the definition of these control variables
within the literature and study the impact of varying these definitions has on the significance of
the variables of interest. We utilize the nine alternative definitions of market-to-book provided,
along with references, in Table 5. These are definitions are used within the literature as controls
from both acquirers and targets. We also utilize the nine definitions of leverage provided, along
with references to the appropriate literature, in Table 6. We allow these variables to vary for those
specifications in our sample in which they appear. These variations generate 80 to 96 stress tests
per specification, dependent on the specification.

6.2.1. Independent (control) variable stress test results

We perform similar stress tests to those found in Section 6.1, but by allowing the definitions
of market-to-book (Tobin’s Q) and leverage to vary and study how these variations impact the
significance of variables of interest. Unlike varying the dependent variable, these results should not
directly influence the coefficient estimate and significance of the variable of interest, and will only
do so indirectly through its correlation with the variable of interest. From our sample, 12 of the 15
specifications contain either market-to-book or leverage, yielding 1,136 stress tests for variables of
interest. We report the results of these tests in Figure 4 and Table 14. As can be seen in Figure 4,
while we continue to find dispersion in tstat_diff there is much larger clustering around zero. This
can be seen in Table 14, Panels A and B. For stress tests of control variables, the mean, median, and
standard deviation of tstat_diff is smaller than what we observed in the independent variable stress
tests, at 0.13, 0.03, and 0.53, respectively. However, we see even higher skewness and kurtosis,
2.34 and 11.69, respectively.

Importantly, we continue to see a slight skewness favoring the published specifications in
Table 14, Panel C. Specifically, 63% of stress tests were lower than the reported/replicated t-
statistic. 19% of stress tests resulted in a drop in significance, 11% resulted in a loss in significance,
and only 3% resulted in an increase in significance. These results are roughly consistent when we
restrict the sample to those reported/replicated results with t-statistics less than 3, as reported
in Panel B of Figure 4 and Table 14. In these cases we see roughly similar summary statistics,
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and slightly higher proportion of stress tests leading to a drop in significance (25%) and a loss in
significance (14%).

To fully ascertain whether these results may be an artifact of our methodology, we again
compare the results to the variation in t-statistics for control variables. Importantly, since we are
varying control market-to-book and leverage, we exclude these variables from this sample when
they are varied (to avoid creating a direct effect on the t-statistics). We present these results in
Figure 3 and Table 17.

As seen in the figure, the clustering of stress tests with a tstat_diff near zero is even higher.
Table 17, Panel A shows that the average tstat_diff for control variables (excluding market-to-book
or leverage when these are allowed to vary in a given stress test) is 0.04 (compared with 0.13).
This difference is similarly significant with a t-statistic of −3.45 and a p-value of 0.0006. Further,
as reported in Table 20, a two-sample Kolmogorov-Smirnov test for the equality of distributions
shows that the distribution for tstat_diff is significantly smaller for the control variables than for
variables of interest when we vary market-to-book and/or leverage definitions.

Taken together, these findings suggest that, while variation in control variables does not have the
same size of impact on the significance of variables of interest, it still generates a meaningful effect.
This is unsurprising given its indirect influence on the estimation of the coefficients of interest.
However, again we find evidence that the definitions chosen for control variables tend to favor the
significance of the variable of interest in published results.

7. Conclusion

This paper develops and applies a declarative econometric framework to the task of stress testing
an established literature. By distinguishing between empirical specifications and empirical proce-
dures, and by implementing the Foghorn language, we demonstrate that empirical research can be
encoded at a high level of abstraction and transpiled into reproducible procedures. This approach
yields several benefits. First, it facilitates replication by requiring specifications to be written in a
transparent, internally consistent manner. Second, it enables bi-directional transparency, making
explicit both the top-down specification and the bottom-up implementation. Third, and most
importantly, it allows for systematic stress testing of entire literatures—something that is infeasible
with traditional, paper-specific code.
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Applying this framework to the mergers and acquisitions literature, we show that most pub-
lished results are replicable once implicit assumptions are made explicit and that within-literature
stress testing reveals significant sensitivity to specification choices. Reported results are often more
statistically significant than stressed alternatives, suggesting that researcher discretion plays a
meaningful role in shaping published findings. At the same time, the framework highlights that
many conclusions remain robust under alternative specifications, reinforcing the value of accumu-
lated knowledge in this field.

More broadly, our results illustrate how declarative econometrics can increase efficiency, replic-
ability, and transparency across empirical research. While not intended to replace traditional coding
practices, declarative methods complement them by providing a scalable and systematic way to
encode, replicate, and stress test empirical analyses. The promise of this approach extends beyond
M&A research: once modules are developed, it can be applied to other areas of finance and the
social sciences more generally. In doing so, declarative econometrics provides a path toward more
resilient empirical literatures.
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Appendix

A Glossary

This glossary provides definitions of programming and econometric terms as used throughout the
paper.

A.1 Programming Terms

Declarative language A programming language in which the programmer specifies what the
program should accomplish, rather than detailing how to perform each step. Programs written
in declarative languages emphasize logic and relationships, often leading to more concise
code, leaving the system to work out the control flow and implementation details needed to
accomplish the task. In foghorn, researchers write declarative econometric specifications, with
the transpiler determining the steps necessary for implementation.

Embedded Domain-Specific Language (EDSL) A specialized programming language built within
a general-purpose language, designed to express solutions in a specific domain (e.g., econo-
metrics) more naturally and concisely. EDSLs leverage the host language’s syntax and features
while providing domain-specific tools and constructs. Developers commonly use EDSLs to
express logic specific to a domain, benefiting from enhanced type safety and improved tooling
support.Haskell is well-suited for EDSLs because of its strong abstractions and type safety.
foghorn is an EDSL of Haskell, providing concise, type-safe econometric logic.

Function composition The process of combining two or more functions to create a new function,
where the output of one serves as the input of the next. Function composition allows program-
mers to build complex operations from simple, reusable parts in a concise, declarative manner.
In foghorn, the composition of econometric functions improves modularity, readability, and
code reuse.

Higher-order function A function that takes other functions as arguments, returns a function
as its result, or both. Higher-order functions are central to expressing abstract computation
succinctly and avoiding repetitive code. foghorn employs higher-order functions to improve
modularity and reduce boilerplate.

Imperative language A programming language in which programs are written as sequences of
explicit instructions that specify how a computer should perform tasks. These languages focus
on describing the control flow and individual steps needed to manipulate program state, often
using variables, loops, and conditional statements. Imperative programming contrasts with
declarative styles, where the focus is on desired outcomes rather than step-by-step procedures.
Existing econometric languages are either imperative or used in an imperative style (e.g.,
SAS, SQL).

Module A self-contained unit of code that groups related functions, types, and definitions under a
common namespace. Modules promote code organization, reuse, and abstraction by allowing
programmers to separate and isolate components within a program. foghorn uses modules
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for its core language and for working in specific empirical areas of empirical research (e.g.,
corporate finance).

Static typing A system in which the types of variables and functions are evaluated at compile time
rather than at runtime. Static typing allows many errors—such as type mismatches or invalid
operations—to be caught early, improving reliability and program safety. foghorn variables
carry type information, including the cross-sectional and/or time-series indexing dimensions,
allowing the language to validate that operations make sense automatically. foghorn uses
static typing alongside type-level programming and type inference to encode and enforce
econometric logic in specifications.

Term-level The “usual” layer of programming and code execution where values are defined, ma-
nipulated, and passed to functions. Unlike type-level programming, term-level programming
focuses on concrete computations and data transformations. Most everyday programming
tasks—such as arithmetic, data processing, and control flow—occur at the term level. In
foghorn, the term-level defines the actual operations.

Transpiling The process of converting source code written in one programming language into
source code of another language, while preserving program behavior. Unlike compiling, which
often targets low-level machine code, transpiling typically produces human-readable code
in another high-level language. foghorn allows econometricians to write specifications with
enhanced features and stronger guarantees—such as improved type safety—while producing
output in established data and econometric software.

Type A type is an abstract classification that specifies the kind of values a variable, expression,
or function can take and the operations that may be performed on them. Types provide a
framework for reasoning about program behavior, ensuring consistency and preventing invalid
operations. foghorn variables carry type information on their index variables (i.e., the cross-
sectional and/or time-series dimensions) and information type (e.g., numeric, SIC code,
text). This, combined with static typing, type inference, and type-level programming lets the
language reason about econometric specifications.

Type checking Type checking is the process by which a compiler or interpreter verifies that
program constructs are used consistently with their declared or inferred types. It ensures,
for example, that operations are applied to compatible data types and that functions receive
valid arguments. foghorn uses type checking to ensure that econometric specifications, and the
variables within them, are consistent.

Type inference Type inference is the process by which a compiler automatically determines the
types of expressions without requiring explicit type annotations from the programmer. This
enables concise code while retaining the benefits of static typing, since the compiler can still
catch type errors at compile time. foghorn leverages Haskell’s type inference to achieve strong
econometric type safety with reduced syntactic overhead as an econometrician does not need
to label a variable’s index or informational types.

Type signature A formal declaration of the inputs and output of a function, along with any
constraints. foghorn uses type signatures to defined econometric logic.
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Type-level A layer above the term-level where logic about types is encoded. In strongly typed
functional languages like Haskell, type-level programming allows developers to encode invari-
ants, perform compile-time checks, and enforce constraints through types themselves. Type-
level programming is the practice of writing programs that use a language’s type system to
encode logic, perform computations, and write expressions and abstractions that occur within
a language’s type system rather than at the term-level. This approach can enforce complex
invariants, guarantee program properties at compile time, and eliminate certain classes of
runtime errors. In foghorn, type-level programming define econometric operations, and speci-
fications.

A.2 Econometric & Research Terms

Bi-directional transparency Transparency in both directions: top-down (explicit specifications
and assumptions) and bottom-up (generated data-manipulation code). Ensures hidden
assumptions are revealed.

Empirical specification A formal, high-level description of the econometric model being esti-
mated, consisting of: the dependent variable, explanatory variables, the functional form of the
relationship, and the chosen estimator. In this paper, the specification is written at a high level
and does not include step-by-step data manipulation.

Empirical procedure The complete process of estimating a model from raw data. It consists of
the complete data manipulation process that transforms raw data into the final dataset and
the econometric estimation procedure.

Indexing variables Identifiers that uniquely label dataset observations, which may be cross-
sectional or time-series.

Reindexing Reindexing is the process of aligning data across datasets with different indexing
systems

Replication Re-implementing a paper’s empirical specification to see if results can be reproduced
with comparable magnitude, significance, and sample size. In this paper, replication is the
process of independently coding an empirical specification as described within a paper. The
replication is conducted from raw data, limiting author-provided information to proprietary
data. Replication in this context is judged successful when: (i) coefficient estimates and signif-
icance are similar, (ii) sample sizes align, and (iii) control variables behave similarly.

Reproduction Obtaining exact results, or results with minor variations, to a published paper’s
empirical specification using data and code provided by the authors.

Robustness test A paper-level sensitivity check in which the authors vary aspects of their own
methodology to show that results are not overly sensitive to small changes. These tests are
typically idiosyncratic, tied to one paper’s assumptions

Stress test A literature-level test that systematically varies common assumptions or practices
across multiple papers.
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Figure 1
CAR Stress Tests: Histogram of the Change in t-statistics of Variables of Interest
This histogram plots tstat_diff for stress tests on the significance of the coefficient on the variable of interest by varying
the definition of Cumulative Abnormal Returns (CARs) performed on 15 specifications from replicated papers. Stress
tests allow for within-literature variation on (1) the CAR announcement window ([−1, +1], [−2, +2], [−3, +3], [−5,
+5], [−1, +5], [−5, +1], [0, +5], and [−5, 0]), (2) abnormal return calculation (equally and value weighted single-
index model (SIM), a Fama-French 3-factor (FF3) and 4-factor (FF4) model, and the equally weighted (OEW) and value
weighted (OVW) market return). (3) the expected return estimation period for tests estimating the market return using
the SIM, FF3, and FF4 ([−205, −6], [−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and [−370,
−253]). tstat_diff defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-
statistics > 0) and the stress test t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics <
0). Panel A plots the 1st through 99th percentiles of all stress tests resulting in 4,543 stress tests. Panel B plots the 1st

through 99th percentiles of a subsample of 3,633 stress tests where the reported/replicated t-statistic is < 3.
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Figure 2
CAR Stress Tests: Histogram of the Change in t-statistics of Control Variables
This histogram plots tstat_diff for stress tests on the significance of the coefficients on control variables by varying the
definition of Cumulative Abnormal Returns (CARs) performed on 15 specifications from replicated papers. Stress tests
allow for within-literature variation on (1) the CAR announcement window ([−1, +1], [−2, +2], [−3, +3], [−5,
+5], [−1, +5], [−5, +1], [0, +5], and [−5, 0]), (2) abnormal return calculation (equally and value weighted single-
index model (SIM), a Fama-French 3-factor (FF3) and 4-factor (FF4) model, and the equally weighted (OEW) and value
weighted (OVW) market return). (3) the expected return estimation period for tests estimating the market return using
the SIM, FF3, and FF4 ([−205, −6], [−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and [−370,
−253]). tstat_diff defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-
statistics > 0) and the stress test t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics <
0). The figure plots the 1st through 99th percentiles of all stress tests resulting in 52,234 stress tests (one tstat_diff for
each control variable-specification-stress test).
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Figure 3
CAR Stress Tests: Histograms Individual Paper Specifications for Variables of Interest
This figure plots the histogram of tstat_diff by specification for each of the 15 specifications from replicated papers. Each histogram presents stress tests on the
significance of the coefficient on the variable of interest by varying the definition of Cumulative Abnormal Returns (CARs). Stress tests allow for within-literature
variation on (1) the CAR announcement window ([−1, +1], [−2, +2], [−3, +3], [−5, +5], [−1, +5], [−5, +1], [0, +5], and [−5, 0]), (2) abnormal return
calculation (equally and value weighted single-index model (SIM), a Fama-French 3-factor (FF3) and 4-factor (FF4) model, and the equally weighted (OEW) and
value weighted (OVW) market return). (3) the expected return estimation period for tests estimating the market return using the SIM, FF3, and FF4 ([−205, −6],
[−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and [−370, −253]). tstat_diff defined as the reported/replicated t-statistic less the stress
test t-statistic (for reported/replicated t-statistics > 0) and the stress test t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0).
Specification numbers are assigned randomly to each specification. Each histogram plots the tstat_diff for all stress tests for that specification.
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Figure 4
Control Variable Stress Tests: Histogram of the Change in t-statistics of Variables of Interest
This histogram plots tstat_diff for stress tests on the significance of the coefficient on the variable of interest by varying
the definition of two independent control variables common across the majority of replicated specifications: market-to-
book (Tobin’s Q) and leverage. These are performed on all specifications that contain these variables (12) from replicated
papers. Stress tests allow for within-literature variation based on the definitions presented in Table 2. tstat_diff defined as
the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-statistics > 0) and the stress test
t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0). Panel A plots the 1st through 99th

percentiles of all stress tests resulting in 1,136 stress tests. Panel B plots the 1st through 99th percentiles of a subsample
of 848 stress tests where the reported/replicated t-statistic is < 3.
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Figure 5
Control Variable Stress Tests: Histogram of the Change in t-statistics of Control Variables
This histogram plots tstat_diff for stress tests on the significance of the coefficients on control variables by varying the
definition of two independent control variables common across the majority of replicated specifications: market-to-book
(Tobin’s Q) and leverage. These are performed on all specifications that contain these variables (12) from replicated
papers. Stress tests allow for within-literature variation based on the definitions presented in Table 2. tstat_diff defined as
the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-statistics > 0) and the stress test
t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0). The figure plots the 1st through
99th percentiles of all stress tests resulting in 12,374 stress tests (one tstat_diff for each control variable-specification-
stress test).
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Table 1
Replication summary.
The table reports estimation results from linear regression models examining the relation between the market reaction to acquisition announcements and target lockup
options. Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation code are available on Github. t-statistics
are reported in parentheses. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level, respectively.

Coefficient Observations
Paper

Key Economic Variable,
Table, and Column Published Replicated Published Replicated

Bates and Lemmon (2003) Bidder Termination Fee Indicator
Table 8, Column (1)

−0.030** −0.022** 3037 3203

Becher, Griffin, and Nini (2021) Financial Covenant Violation
Table 6, Column (1)

1.860** 1.093** 7191 7299

Burch (2001) Lockup(0/1)
Table 6, Column (6)

−0.012* −0.017*** 744 766

Fuller, Netter, and Stegemoller
(2002)

Dummy = 1, if fifth or higher bid
Table 7, Column "Private"“

−0.019*** −0.018*** 2060 1313

Golubov, Yawson, and Zhang (2015) Ln(Acquirer Size)
Table 1, Column "Full Sample"“

−0.004*** −0.003*** 12 491 14 863

Gorton, Kahl, and Rosen (2009) Log 123–456 size ratio 
Table V, Column "Harford Waves (4)"“

0.029*** 0.041** 1331 1141

Harford, Humphery-Jenner, and
Powell (2012)

Dictator Dummy
Table 5, Column (1)

−0.524** −0.606** 3934 3258

John, Knyazeva, and Knyazeva
(2015)

Acquirer - Weak Labor Rights
Table 5, Column (3)

0.494*** 0.267** 13 838 13 846

Continued
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Table 1
Continued.

Coefficient Observations
Paper

Key Economic Variable,
Table, and Column Published Replicated Published Replicated

Li, Qiu, and Shen (2018) OC (Organizational Capital)
Table 2, Column 1

0.250*** 0.329*** 17 910 21 010

Ma, Whidbee, and Zhang (2019) RPR (Relative Price Ratio)
Table 3, Column "All"“

−5.487*** −9.397*** 19 119 4529

Masulis, Wang, and Xie (2007) GIM Index
Table VI, Column 1

−0.107** −0.083** 3333 3380

Moeller, Schlingemann, and Stulz
(2004)

Small (Market Capitalization Acquirers)
Table 5, Column 1

0.016*** 0.015*** 9712 10 796

Nguyen and Phan (2017) PU_Announcement (Political Uncertainty)
Table 7, Column 3

0.007** 0.008** 6376 6674

Roosenboom, Schlingemann, and
Vasconcelos (2013)

Stock Liquidity
Table 2, Column (3)

−0.038*** −0.006*** 3815 4189

Wang and Xie (2009) Shareholder Rights Difference
Table 5, Column "TCAR"“

0.836*** 0.594*** 396 378
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Table 2
Cumulative Abnormal Return Definitions in the M&A Literature.
The table presents the definitions of cumulative abnormal returns (CAR) used in the replicated papers. Panel A lists papers that use excess return models, where the
daily abnormal return is the stock return less the market index. Panel B lists papers that use abnormal return models, where the daily abnormal return is the stock
return less the return predicted by an empirical model. Event windows, [start, end], indicate the start and end days use to sum abnormal returns. Both start and end
are given in trading days relative to the announcement date. The market model include single index models, SIM, and the Fama-French 4 factor model, FF4. Estimation
periods, [start, end], list the start and end days used to estimate the model parameters. Both days are trading days relative to the announcement date.

# References Event Window Market Index/Model Model Estimation Period
Panel A: Excess Return Models
1 Bates and Lemmon (2003),

Gorton, Kahl, and Rosen (2009),
Li, Qiu, and Shen (2018)

[−1, 1] CRSP Value Weighted N/A

2 Burch (2001) [−1, 2] CRSP Value Weighted N/A
3 Fuller, Netter, and Stegemoller (2002) [−2, 2] CRSP Value Weighted N/A
Panel B: Abnormal Return Models
4 Becher, Griffin, and Nini (2021) [−1, 1] SIM CRSP Equal Weighted [−271, −20]
5 Moeller, Schlingemann, and Stulz (2004) [−1, 1] SIM CRSP Equal Weighted [−205, −6]
6 Nguyen and Phan (2017) ???? [−1, 1] SIM CRSP Value Weighted [−210, −11]
7 Harford, Humphery-Jenner, and Powell (2012),

Masulis, Wang, and Xie (2007)
[−2, 2] SIM CRSP Equal Weighted [−210, −11]

8 Roosenboom, Schlingemann, and Vasconcelos (2013) [−2, 2] SIM CRSP Value Weighted [−245, −46]
9 John, Knyazeva, and Knyazeva (2015) [−2, 2] SIM CRSP Value Weighted [−210, −11]

Continued
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Table 2
Continued.

# References Event Window Market Index/Model Model Estimation Period
10 Golubov, Yawson, and Zhang (2015) [−2, 2] SIM CRSP Value Weighted [−300, −91]
11 Ma, Whidbee, and Zhang (2019) [−5, 1] SIM CRSP Equal Weighted [−370, −253]
12 Wang and Xie (2009) [−5, 5] SIM CRSP Value Weighted [−210, −11]
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Table 3
Market-to-book ratio (Tobin’s q) control variable alternative definitions used for stress testing.
The table presents the various definitions of market-to-book ratio used in the literature. This ratio is also referred to
as Tobin’s q in the literature. For each definition, the table lists the formula as datasource.variable. Funda indicates a
variable sourced from Compustat Fundamentals Annual Data, and Fundq indicates a variable sourced from Compustat
Fundamentals Quarterly data. at is the total book value of assets, ceq is the total book value of common/ordinary equity,
csho is the total number of shares of common/ordinary equity as of the fiscal year end, dlc is the total book value of debt
in current liabilities, dltt is the total book value of long-term debt, lt is the total book value of liabilities, prccF is the
closed sharing price at the end of the fiscal year, txdb is the balance sheet value of deferred taxes, and txditc is the value
of deferred taxes and investment tax credit. Missing values of txdb and txditc are treated as zeros. preferred is the
liquidating value of preferred stock (Funda. pstkl) if it is available, otherwise it is the redemption value (Funda. pstkrv).

# Formula
References

1 (Fundq.at - Fundq.ceq + Fundq.csho × Fundq.prccF) / Fundq.at
Becher, Griffin, and Nini (2021)

2 (Funda.at - Funda.ceq + Funda.csho × Funda.prccF) / Funda.at
Burch (2001), Harford, Humphery-Jenner, and Powell (2012), Masulis, Wang, and Xie (2007), Moeller,
Schlingemann, and Stulz (2004)

3 (Funda.at + (Funda.prccF × Funda.csho) - Funda.ceq - Funda.txdb) / Funda.at
Golubov, Yawson, and Zhang (2015)

4 Funda.at + (Funda.prccF × Funda.csho) - Funda.ceq - Funda.txdb / Funda.ceq
Gorton, Kahl, and Rosen (2009)

5 Funda.csho × Funda.prccF / Funda.at
Li, Qiu, and Shen (2018)

6 ln (Funda.csho × Funda.prccF / Funda.ceq)
Ma, Whidbee, and Zhang (2019)

7 ln (Funda.csho × Funda.prccF / Funda.ceq)
Nguyen and Phan (2017)

8 (Funda.lt - txditc + preferred + Funda.csho × Funda.prccF) / Funda.at
Roosenboom, Schlingemann, and Vasconcelos (2013)

9 (Funda.at - Funda.ceq + Funda.csho × Funda.prccF) / Funda.at
Wang and Xie (2009)
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Table 4
Leverage control variable alternative definitions used for stress testing.
The table presents the various definitions of leverage ratios used in the literature. For each definition, the table lists the
formula as datasource.variable. Funda indicates a variable sourced from Compustat Fundamentals Annual Data, and
Fundq indicates a variable sourced from Compustat Fundamentals Quarterly data. Funda.at (Funda.atq) is the annual
(quarterly) total book value of assets, Funda.ceq is the total annual book value of common/ordinary equity, Funda.csho
is the total annual number of shares of common/ordinary equity as of the fiscal year end, Funda.dlc (Funda.dlcq) is the
total annual (quarterly) book value of debt in current liabilities, Funda.dltt (Funda.dlttq) is the total annual (quarterly)
book value of long-term debt, Funda.lt is the total annual book value of liabilities, Funda.prccF is the closed sharing
price at the end of the fiscal year, Funda.txditc is the annual value of deferred taxes and investment tax credit. Missing
values of Funda.txditc are treated as zeros. preferred is the liquidating value of preferred stock (Funda.pstkl) if it is
available, otherwise it is the redemption value (Funda.pstkrv).

# Formula
References

1 (Fundq.dlttq + Fundq.dlcq) / Fundq.atq
Becher, Griffin, and Nini (2021)

2 (Funda.dlc + Funda.dltt) / Funda.at
Burch (2001), Harford, Humphery-Jenner, and Powell (2012), Nguyen and Phan (2017)

3 (Funda.dltt + Funda.dlc) / (Funda.lt - txditc + preferred + Funda.csho × Funda.prccF)
Golubov, Yawson, and Zhang (2015), Roosenboom, Schlingemann, and Vasconcelos (2013)

4 (Funda.at - Funda.ceq) / Funda.at
Ma, Whidbee, and Zhang (2019)

5 (Funda.dlc + Funda.dltt) / (Funda.at + Funda.csho × Funda.prccF)
Masulis, Wang, and Xie (2007)

6 (Funda.dltt + Funda.dlc) / (Funda.at - Funda.ceq + Funda.csho × Funda.prccF)
Moeller, Schlingemann, and Stulz (2004)

7 Funda.dlc + Funda.dltt / (Funda.dlc + Funda.dltt + Funda.csho × Funda.prccF)
Li, Qiu, and Shen (2018)

8 (Funda.dlc + Funda.dltt) / Funda.at
Wang and Xie (2009)
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Table 5
CAR Stress Tests: Variables of Interest

size: 9pt, { par( justify: true, leading: 0.2em, )[ This table reports summary statistics on stress tests on the significance of the coefficient on
the variable of interest by varying the definition of Cumulative Abnormal Returns (CARs) performed on 15 specifications from replicated
papers. Stress tests allow for within-literature variation on (1) the CAR announcement window ([−1, +1], [−2, +2], [−3, +3], [−5,
+5], [−1, +5], [−5, +1], [0, +5], and [−5, 0]), (2) abnormal return calculation (equally and value weighted single-index model
(SIM), a Fama-French 3-factor (FF3) and 4-factor (FF4) model, and the equally weighted (OEW) and value weighted (OVW) market
return). (3) the expected return estimation period for tests estimating the market return using the SIM, FF3, and FF4 ([−205, −6],
[−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and [−370, −253]). Panel A reports summary statistics for
tstat_diff. tstat_diff is defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-statistics > 0)
and the stress test t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0). Panel B reports distribution
statistics for tstat_diff. Panel C reports summary statistics on the proportion of stress tests resulting in lower significance (tstat_diff<0),
a reduction in the level of significance (i.e. moving from 1% significance to 5% significance), a loss of significance, and an increase in
the level of significance. ] }, )

N Mean Std. Dev. Skewness Kurtosis
Panel A: Summary statistics
All specifications 4543 0.774 1.052 1.257 7.802
<3 3633 0.597 0.762 0.089 3.156

Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max
Panel B: Distribution
All specifications −3.711 −1.475 −0.560 −0.228 0.087 0.674 1.261 1.888 2.512 4.720 6.634
<3 −1.966 −1.327 −0.564 −0.265 0.040 0.560 1.154 1.527 1.830 2.486 3.220
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Increase in tstat_diff Drop in Significance Loss of Significance Increase in Significance
Panel C: Changes in statistical significance thresholds (%)
All specifications 80.176 52.651 36.897 4.708
<3 77.744 63.603 46.052 5.887
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Table 6
CAR Stress Tests: Control Variables
This table reports summary statistics on stress tests on the significance of coefficients on control variables by varying the definition of Cumulative Abnormal Returns
(CARs) performed on 15 specifications from replicated papers. Stress tests allow for within-literature variation on (1) the CAR announcement window ([−1, +1],
[−2, +2], [−3, +3], [−5, +5], [−1, +5], [−5, +1], [0, +5], and [−5, 0]), (2) abnormal return calculation (equally and value weighted single-index model (SIM), a
Fama-French 3-factor (FF3) and 4-factor (FF4) model, and the equally weighted (OEW) and value weighted (OVW) market return). (3) the expected return estimation
period for tests estimating the market return using the SIM, FF3, and FF4 ([−205, −6], [−210, −11], [−245, −45], [−252, −20], [−272, −20], [−300, −91], and
[−370, −253]). Panel A reports summary statistics for tstat_diff. tstat_diff is defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/
replicated t-statistics > 0) and the stress test t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0). Panel B reports distribution
statistics for tstat_diff. Panel C reports summary statistics on the proportion of stress tests resulting in lower significance (tstat_diff < 0), a reduction in the level of
significance (i.e. moving from 1% significance to 5% significance), a loss of significance, and an increase in the level of significance.

N Mean Std. Dev. Skewness Kurtosis
Panel A: Summary statistics
All specifications 52 234 0.336 1.390 1.347 16.592

Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max
Panel B: Distribution
All specifications −14.243 −3.397 −1.430 −0.948 −0.291 0.222 0.893 1.675 2.352 4.946 15.480

Increase in tstat_diff Drop in Significance Loss of Significance Increase in Significance
Panel C: Changes in statistical significance thresholds (%)
All specifications 61.418 15.985 11.496 11.250
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Table 7
Comparing the Distributions of Variables of Interest and Control Variables in CAR Stress Tests
This table reports a two-sample Kolmogorov-Smirnov test for the equality of distributions between the distribution of
tstat_diff on variables of interest (corresponding to those described in Table 7) and the distribution of tstat_diff on control
variables (corresponding to those described in Table 10).

Group D p-value
Controls 0.197 <0.001
Variables of Interest −0.004 0.816
Combined K-S 0.197 <0.001
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Table 8
Control Variable Definition Stress Tests: Variables of Interest
This table reports summary statistics on stress tests on the significance of the coefficient on the variable of interest by varying the definition of two independent control
variables common across the majority of replicated specifications: market-to-book (Tobin’s Q) and leverage. These are performed on all specifications that contain
these variables (12) from replicated papers. Stress tests allow for within-literature variation based on the definitions presented in Table 2. Panel A reports summary
statistics for tstat_diff. tstat_diff is defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-statistics > 0) and the stress test
t-statistic less the reported/replicated t-statistic (for reported/replicated t-statistics < 0). Panel B reports distribution statistics for tstat_diff. Panel C reports summary
statistics on the proportion of stress tests resulting in lower significance (tstat_diff<0), a reduction in the level of significance (i.e. moving from 1% significance to 5%
significance), a loss of significance, and an increase in the level of significance.

N Mean Std. Dev. Skewness Kurtosis
Panel A: Summary statistics
All specifications 1136 0.132 0.533 2.336 11.693
<3 848 0.106 0.499 2.068 9.994

Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max
Panel B: Distribution
All specifications −1.251 −1.047 −0.501 −0.338 −0.029 0.032 0.207 0.546 1.446 2.320 3.473
<3 −1.251 −1.088 −0.506 −0.251 −0.029 0.025 0.135 0.323 1.502 2.145 2.391

Increase in tstat_diff Drop in Significance Loss of Significance Increase in Significance
Panel C: Changes in statistical significance thresholds (%)
All specifications 62.676 18.661 10.651 2.464
<3 61.320 24.764 14.268 3.301
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Table 9
Control Variable Definition Stress Tests: Control Variables
This table reports summary statistics on stress tests on the significance of coefficients on control variables by varying the definition of two independent control variables
common across the majority of replicated specifications: market-to-book (Tobin’s Q) and leverage. These are performed on all specifications that contain these variables
(12) from replicated papers. Stress tests allow for within-literature variation based on the definitions presented in Table 2. Panel A reports summary statistics for
tstat_diff. tstat_diff is defined as the reported/replicated t-statistic less the stress test t-statistic (for reported/replicated t-statistics > 0) and the stress test t-statistic less
the reported/replicated t-statistic (for reported/replicated t-statistics < 0). Panel B reports distribution statistics for tstat_diff. Panel C reports summary statistics on the
proportion of stress tests resulting in lower significance (tstat_diff<0), a reduction in the level of significance (i.e. moving from 1% significance to 5% significance), a
loss of significance, and an increase in the level of significance.

N Mean Std. Dev. Skewness Kurtosis
Panel A: Summary statistics
All specifications 12 784 0.044 0.836 1.021 31.564

Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max
Panel B: Distribution
All specifications −9.492 −2.381 −0.696 −0.386 −0.111 −0.001 0.086 0.484 1.097 3.618 11.730

Increase in tstat_diff Drop in Significance Loss of Significance Increase in Significance
Panel C: Changes in statistical significance thresholds (%)
All specifications 46.127 4.458 2.933 4.497
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Table 10
Comparing the Distributions of Variables of Interest and Control Variables in Control Variable Stress
Tests
This table reports a two-sample Kolmogorov-Smirnov test for the equality of distributions between the distribution of
tstat_diff on variables of interest (corresponding to those described in Table 14) and the distribution of tstat_diff on
control variables (corresponding to those described in Table 17).

Group D p-value
Controls 0.190 <0.001
Variables of Interest −0.014 0.661
Combined K-S 0.190 <0.001

63



Stress Testing a Literature with Declarative Econometrics

Vanitha Ragunathan
University of Queensland

Jared Stanfield
University of Oklahoma

Robert Tumarkin††††

UNSW Sydney

September 01, 2025

Internet Appendix

* Corresponding Author. UNSW Business School, UNSW Sydney, Sydney NSW 2052, Australia. Telephone: +(61)
02 9065 1656. E-mail: r.tumarkin@unsw.edu.au.



Replication Table IA1
Replication of Bates and Lemmon (2003), Table 8, Column (1).
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and target and bidder termination fees. The dependent variable is the acquiring firm’s
cumulative abnormal return, which is aggregated over the 3-day trading window beginning 1 trading days prior to and
ending 1 trading days following the merger announcement. All variables are as defined in Bates and Lemmon (2003).
Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation
code are available on Github. t-statistics are reported in parentheses. Coefficients displayed in bold represent the key
economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10%
level, respectively.

Column (1)
Published Replicated

Target termination fee indicator 0.010 0.014*
(0.960) (1.703)

Bidder termination fee indicator -0.030** -0.022**
(-2.340) (-2.009)

Deal includes a lockup 0.002 0.002
of target shares (0.820) (0.286)
Deal status 0.039*** 0.018**
(1=completed 0=withdrawn) (3.440) (1.978)
Prior bidding indicator -0.063*** -0.057***

(-6.120) (-5.959)
Stock offer -0.025*** -0.034***

(-2.540) (-4.145)
Tender offer 0.091*** 0.080***

(7.530) (7.366)
Bidder toehold -0.063*** -0.001**

(-4.320) (-2.434)
Deal attitude 0.040** 0.032**
(1=hostile 0=friendly or unsolicited) (2.260) (2.206)
Log marketvalue of equity -0.012*** <0.001***

(-4.600) (-3.521)
Number of observations 3037 3203
Adjusted-𝑅2 0.067 0.063
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Replication Table IA2
Replication of Becher, Griffin, and Nini (2021), Table 6, Column (1).
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and financial covenant violations. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 3-day trading window beginning 1 trading days prior to and ending
1 trading days following the merger announcement. All variables are as defined in Becher, Griffin, and Nini (2021).
Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation code
are available on Github. Standard errors are reported in cornered parentheses. Coefficients displayed in bold represent
the key economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5%
and 10% level, respectively.

Column (1)
Published Replicated

Financial covenant violation 1.860*** 1.093**
〔0.687〕 〔0.537〕

Size -0.057*** -0.627***
〔0.007〕 〔0.059〕

Stock price runup -0.041 -0.003
〔0.241〕 〔0.002〕

Market-to-book ratio -0.277** -0.278**
〔0.108〕 〔0.118〕

Operating cash flow / assets -0.711 9.852**
〔0.933〕 〔3.952〕

Leverage ratio 0.870 0.847
〔0.556〕 〔0.574〕

Observations 7191 7299
Adjusted R-squared 0.018 0.030
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Replication Table IA3
Replication of Burch (2001), Table 6, Column (6).
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and target lockup options. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 4-day trading window beginning 1 trading days prior to and ending 2
trading days following the merger announcement. All variables are as defined in Burch (2001). Replication code written
in the foghorn declarative econometric language and the transpiled SQL data manipulation code are available on Github.
p-values are reported in brackets. Coefficients displayed in bold represent the key economic variable of interest in the
paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level, respectively.

Column (6)
Published Replicated

Lockup (0/1) -0.012* -0.017***
[0.093] [0.002]

Toehold 0.001** <0.001
[0.039] [0.994]

Completed <0.001 0.002
[0.945] [0.820]

Hostile 0.001 0.015
[0.880] [0.209]

Free cash flow -0.002 -0.030
[0.910] [0.285]

Instown -0.023 -0.012
[0.106] [0.370]

Litigation -0.006 -0.002
[0.427] [0.804]

Market-to-book -0.007*** -0.009***
[0.002] [<0.001]

Size -0.002 -0.003*
[0.289] [0.086]

Leverage 0.003 0.023*
[0.833] [0.060]

Observations 744 776
Adjusted R-squared 0.018 0.043
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Replication Table IA4
Replication of Fuller, Netter, and Stegemoller (2002), Table VII, Column “Private”.
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and bidding firm acquisition frequency. The dependent variable is the acquiring firm’s
cumulative abnormal return, which is aggregated over the 5-day trading window beginning 2 trading days prior to and
ending 2 trading days following the merger announcement. All variables are as defined in Fuller, Netter, and Stegemoller
(2002). Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipu-
lation code are available on Github. p-values are reported in brackets. Coefficients displayed in bold represent the key
economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10%
level, respectively.

Column “Private”
Published Replicated

Dummy = 1 if target is acquired with common 0.043*** 0.115**
stock [0.007] [0.025]
Dummy = 1 if target is acquired with combo 0.009 0.032

[0.460] [0.580]
Dummy = 1 if first bid -0.003 -0.010

[0.685] [0.305]
Dummy = 1 if fifth or higher bid -0.019*** -0.018***

[<0.001] [0.005]
Dummy = 1 if target is foreign -0.012* -0.006

[0.062] [0.474]
Dummy = 1 if bidder or target is a -0.004 -0.002
tech firm [0.431] [0.722]
Dummy = 1 if target and bidder are 0.004 -0.013**
in same industry [0.358] [0.035]
Log of relative size 0.007*** 0.001

[0.010] [0.662]
Log of target size 0.001 0.002

[0.442] [0.390]
Interaction variable = relative size × stock 0.011** 0.011**

[0.012] [0.020]
Interaction variable = relative size × combo 0.003 0.002

[0.513] [0.739]
F-statistic 5.140 6.310
N 2060 1313
Adjusted R2 0.035 0.042
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Replication Table IA5
Replication of Golubov, Yawson, and Zhang (2015), Table 1, Column “Full Sample”.
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and acquirer size. The dependent variable is the acquiring firm’s cumulative abnormal return,
which is aggregated over the 5-day trading window beginning 2 trading days prior to and ending 2 trading days following
the merger announcement. All variables are as defined in Golubov, Yawson, and Zhang (2015). Replication code written
in the foghorn declarative econometric language and the transpiled SQL data manipulation code are available on Github.
t-statistics are reported in parentheses. Coefficients displayed in bold represent the key economic variable of interest in
the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level, respectively.

Column “Full Sample”
Published Replicated

Intercept 0.032*** 0.051***
(2.941) (3.226)

Ln (acquirer size) -0.004*** -0.003***
(5.496) (-2.856)

Tobin’s Q -0.002*** -0.001*
(2.966) (-1.912)

Run-up -0.013*** -0.005***
(4.512) (-3.484)

Free cash flow -0.012 -0.014*
(1.331) (-1.711)

Leverage 0.017** 0.001
(2.523) (0.087)

Sigma 0.350** 0.075
(2.306) (0.694)

Relative size 0.002 29.263**
(1.549) (2.191)

Relatedness <-0.001 0.001
(0.160) (0.683)

Tender offer 0.002 -0.001
(0.392) (-0.131)

Hostile 0.007 <0.001
(0.592) (-0.010)

Public × All-cash -0.003 -0.006
(0.755) (-1.490)

Public × Stock -0.032*** -0.042***
(12.268) (-9.530)

Private × All-cash -0.004 -0.002
(1.520) (-0.933)

Private × Stock -0.001 -0.002
(0.259) (-0.822)

Subsidiary × All-cash 0.007*** 0.005**
(2.606) (2.066)

N 12491 14863
R2 0.057 0.082
Adj. R2 0.055 0.080
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Replication Table IA6
Replication of Gorton, Kahl, and Rosen (2009), Table V, Column “Harford Waves (4)”.
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and the distribution of firm sizes in the acquired firm’s industry. The dependent variable is
the acquiring firm’s cumulative abnormal return, which is aggregated over the 3-day trading window beginning 1 trading
days prior to and ending 1 trading days following the merger announcement. All variables are as defined in Gorton,
Kahl, and Rosen (2009). Replication code written in the foghorn declarative econometric language and the transpiled
SQL data manipulation code are available on Github. p-values are reported in brackets. Coefficients displayed in bold
represent the key economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at
the 1%, 5% and 10% level, respectively.

Column “Harford Waves (4)”
Published Replicated

Log 123–456 size ratio 0.029*** 0.041**
[0.007] [0.023]

Cash 0.001 0.004
[0.881] [0.520]

Ratio 0.003 0.007
[0.694] [0.497]

Log value -0.006*** -0.004**
[<0.001] [0.029]

Tar priv 0.015*** 0.024***
[0.001] [<0.001]

Tar sub 0.022*** 0.020***
[<0.001] [0.010]

Cross industry 0.007 0.009
[0.104] [0.405]

Competing bid 0.006 -0.036**
[0.720] [0.014]

Tender offer 0.017* 0.019*
[0.056] [0.086]

Stock market return -0.001 0.003
[0.861] [0.558]

Market/book 0.002* 0.001
[0.080] [0.114]

Industry Herfindahl 0.036 0.109**
[0.720] [0.032]

Observations 1334 1141
R2 0.113 0.075
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Replication Table IA7
Replication of Harford, Humphery-Jenner, and Powell (2012), Table 5, Column (1).
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and managerial entrenchment. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 5-day trading window beginning 2 trading days prior to and ending
2 trading days following the merger announcement. All variables are as defined in Harford, Humphery-Jenner, and
Powell (2012). Replication code written in the foghorn declarative econometric language and the transpiled SQL data
manipulation code are available on Github. Standard errors are reported in cornered parentheses. Coefficients displayed
in bold represent the key economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant
at the 1%, 5% and 10% level, respectively.

Column (1)
Published Replicated

Dictator dummy -0.524** -0.606**
〔-0.210〕 〔0.244〕

Subsidiary 2.059*** 2.723***
〔-0.327〕 〔0.383〕

Private 1.495*** 2.298***
〔-0.278〕 〔0.384〕

All cash 0.313 0.297
〔-0.310〕 〔0.255〕

All stock -0.813** -0.469
〔-0.345〕 〔0.429〕

Log firm age -0.016 -0.083
〔-0.152〕 〔0.165〕

Stock run-up 0.977*** -1.937***
〔-0.340〕 〔0.366〕

PRIV -0.085***
〔-0.019〕

Log market value -0.318*** <0.001
〔-0.083〕 〔<0.001〕

Tobin’s q 0.292** 0.139
〔-0.117〕 〔0.155〕

Free cash flow 6.625* -1.906
〔-3.892〕 〔2.188〕

Leverage 3.187*** -1.108
〔-1.041〕 〔0.772〕

Industry M&A -0.156 -2.797**
〔-6.130〕 〔1.373〕

Relative size 0.146 1.674***
〔-0.793〕 〔0.614〕

Continued
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Replication Table IA7
Continued

Column (1)
Published Replicated

Tech 0.314 -0.212
〔-0.248〕 〔0.336〕

Conglomerate 0.038 0.427*
〔-0.227〕 〔0.238〕

Competed -0.948 -1.142*
〔-0.701〕 〔0.658〕

Volume 0.124 -0.334*
〔-0.098〕 〔0.182〕

Cross-border 2.964** -0.187
〔-1.160〕 〔0.294〕

Friendly -2.786*** -2.652***
〔-0.870〕 〔0.879〕

Serial_3 0.092 -0.123
〔-0.274〕 〔0.311〕

Number of observations 3934 3258
F-statistic 8.310*** 8.579
Adjusted R2 0.073 0.053
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Replication Table IA8
Replication of John, Knyazeva, and Knyazeva (2015), Table V, Column (3).
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and state-level labor rights. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 5-day trading window beginning 2 trading days prior to and ending 2
trading days following the merger announcement. All variables are as defined in John, Knyazeva, and Knyazeva (2015).
Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation
code are available on Github. t-statistics are reported in parentheses. Coefficients displayed in bold represent the key
economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10%
level, respectively.

Column (3)
Acquirer—weak labor rights 0.494*** 0.267**

(5.440) (2.122)
Acquirer size -0.262*** -0.325***

(-5.250) (-6.621)
Relative deal size -0.882*** 2.024***

(-3.530) (10.551)
Diversifying acquisition -0.081 -0.447**

(-0.930) (-2.115)
Tech indicator 0.276 -0.939***

(0.590) (-3.617)
Number of observations 13838 13846
R2 0.010 0.034
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Replication Table IA9
Replication of Li, Qiu, and Shen (2018), Table 2, Column 1.
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and organizational capital. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 3-day trading window beginning 1 trading days prior to and ending 1
trading days following the merger announcement. All variables are as defined in Li, Qiu, and Shen (2018). Replication
code written in the foghorn declarative econometric language and the transpiled SQL data manipulation code are
available on Github. Standard errors are reported in cornered parentheses. Coefficients displayed in bold represent the
key economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and
10% level, respectively.

Column 1
OC 0.250*** 0.329***

〔0.084〕 〔0.116〕
ROA -0.007 -0.011

〔0.008〕 〔0.007〕
M/B -0.032 -0.114***

〔0.021〕 〔0.039〕
LEVERAGE 2.921*** 3.138***

〔0.396〕 〔0.904〕
PAST_RETURN 0.002* 0.781***

〔0.001〕 〔0.170〕
TOP5_INSTITUTIONS -1.905***

〔0.563〕
FIRM_SIZE -0.405*** -0.554***

〔0.040〕 〔0.067〕
ALL_CASH 0.536*** 0.410***

〔0.127〕 〔0.142〕
ALL_STOCK 0.023 0.181

〔0.196〕 〔0.287〕
DIVERSIFYING -0.037 -0.066

〔0.132〕 〔0.165〕
TENDER_OFFER 1.138*** 1.241***

〔0.311〕 〔0.331〕
RELATIVE_SIZE 0.950*** 0.181**

〔0.168〕 〔0.090〕
PRIVATE_TARGET 2.270*** 1.949***

〔0.186〕 〔0.234〕
SUBSIDIARY_TARGET 2.758*** 2.729***

〔0.198〕 〔0.261〕
No. of obs. 17910 21010
Adj. R2 0.053 0.038
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Replication Table IA10
Replication of Ma, Whidbee, and Zhang (2019), Table 3, Column “All”.
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and acquirer stock price relative to its 52-week high. The dependent variable is the acquiring
firm’s cumulative abnormal return, which is aggregated over the 7-day trading window beginning 5 trading days prior to
and ending 1 trading days following the merger announcement. Reference price ratio (RPR) is the ratio of the acquirer’s
preannouncement stock price to its 52-week high price. All variables are as defined in Ma, Whidbee, and Zhang (2019).
Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation
code are available on Github. t-statistics are reported in parentheses. Coefficients displayed in bold represent the key
economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10%
level, respectively.

Column “All”
Published Replicated

RPR -5.487*** -9.397***
(-8.560) (-5.676)

Ln(M/B) -0.285** -1.531***
(-2.140) (-5.142)

Stock -1.208*** -1.071**
(-4.060) (-1.991)

Cash 0.145 1.130***
(0.910) (3.375)

Private 2.321*** 0.477
(10.600) (1.181)

Stock × Private 2.125*** 6.244*
(5.040) (1.904)

Rel. size 2.216*** 1.132**
(8.800) (1.961)

Size -0.398*** -0.511***
(-7.690) (-5.063)

Leverage -0.081 1.182
(-0.210) (1.357)

Dormant > 1 yr 0.628*** 2.548***
(2.880) (5.948)

Same industry 0.107 0.266
(0.670) (0.711)

Tender offer 1.058** 4.050***
(2.220) (8.095)

Hostile -0.759* -2.155*
(-1.890) (-1.874)

Toehold 0.047 -0.914
(0.100) (-0.807)

Cross border -0.187 -0.398
(-0.770) (-0.467)

Past return 0.777*** 2.039***
(4.700) (6.100)

N 19119 4529
Adj. R2 0.064 0.116
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Replication Table IA11
Replication of Masulis, Wang, and Xie (2007), Table VI, Column (1).
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and corporate governance. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 5-day trading window beginning 2 trading days prior to and ending
2 trading days following the merger announcement. All variables are as defined in Masulis, Wang, and Xie (2007).
Replication code written in the foghorn declarative econometric language and the transpiled SQL data manipulation
code are available on Github. t-statistics are reported in parentheses. Coefficients displayed in bold represent the key
economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10%
level, respectively.

Column (1)
Published Replicated

Antitakeover Provisions:
GIM index -0.107** -0.083**

(-2.490) (-2.072)
Bidder Characteristics:
Log(total assets) -0.301*** -0.328***

(-3.590) (-3.634)
Tobin’s 𝑞 -0.085 -0.033

(-0.680) (-0.227)
Free cash flow 1.902 -0.755

(0.860) (-0.335)
Leverage 0.678 -0.284

(0.640) (-0.239)
Stock price runup -0.906** -1.526***

(-2.540) (-4.156)
Deal Characteristics:
Industry M&A -1.096 -1.637

(-0.770) (-1.110)
Relative deal size 0.209 1.486**

(0.360) (2.253)
High tech 0.420 -0.197

(0.920) (-0.506)
High tech × relative deal size -6.078*** -0.824

(-3.150) (-0.355)
Diversifying acquisition -0.269 0.165

(-0.880) (0.685)
Public target × stock deal -3.902*** -2.758***

(-7.290) (-7.314)
Public target × all-cash deal -2.082*** -0.942*

(-3.340) (-1.891)
Private target × all-cash deal -1.969*** -0.685

(-3.530) (-1.502)
Private target × stock deal -1.689*** -0.408

(-3.100) (-1.280)
Subsidiary target × all-cash deal -1.472*** -0.069

(-2.900) (-0.190)
Number of obs. 3333 3380
Adjusted-𝑅2 0.062 0.055
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Replication Table IA12
Replication of Moeller, Schlingemann, and Stulz (2004), Table 5, Column (1)
The table reports estimation results from linear regression models examining the relation between the market reaction
to acquisition announcements and firm size. The dependent variable is the acquiring firm’s cumulative abnormal return,
which is aggregated over the 3-day trading window beginning 1 trading days prior to and ending 1 trading days following
the merger announcement. All variables are as defined in Moeller, Schlingemann, and Stulz (2004). Replication code
written in the foghorn declarative econometric language and the transpiled SQL data manipulation code are available on
Github. p-values are reported in brackets. Coefficients displayed in bold represent the key economic variable of interest
in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level, respectively.

Column (1)
Published Replicated

Intercept 0.015*** 0.004
[<0.001] [0.196]

Private -0.004* -0.007***
[0.085] [0.004]

Public -0.032*** -0.028***
[<0.001] [<0.001]

Small 0.016*** 0.015***
[<0.001] [<0.001]

Conglomerate -0.004* 0.001
[0.051] [0.736]

Tender offer 0.015*** 0.014***
[0.001] [0.003]

Hostile -0.012 0.019*
[0.195] [0.065]

Competed -0.007 -0.010
[0.299] [0.234]

All equity -0.003 0.001
[0.341] [0.829]

All cash -0.004** 0.002
[0.047] [0.315]

Relative size 0.012*** <0.001
[0.001] [0.102]

Tobin’s q -0.001* <0.001
[0.064] [0.573]

Debt/assets(mkt.) 0.001 -0.012*
[0.876] [0.057]

Liquidity index -0.009*** -0.001
[0.003] [0.121]

CF/assets (mkt.) 0.001 0.031***
[0.811] [0.002]

n 9712 10796
Adjusted-R2 0.052 0.018
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Replication Table IA13
Replication of Nguyen and Phan (2017), Table 7, Column (3).
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and government policy uncertainty. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 3-day trading window beginning 1 trading days prior to and ending 1
trading days following the merger announcement. All variables are as defined in Nguyen and Phan (2017). Replication
code written in the foghorn declarative econometric language and the transpiled SQL data manipulation code are
available on Github. t-statistics are reported in parentheses. Coefficients displayed in bold represent the key economic
variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level,
respectively.

Column (3)
Published Replicated

PU_ANNOUNCEMENT 0.007** 0.008**
(2.040) (2.357)

SIZE -0.007*** -0.005***
(8.400) (-5.656)

MARKET-TO-BOOK_RATIO -0.003** -0.001**
(2.570) (-2.544)

PAST_12_MONTH_RETURNS -0.003 0.005***
(1.060) (4.122)

AVERAGE_SALES_GROWTH -0.006 <0.001***
(1.040) (4.615)

BOOK_LEVERAGE 0.022*** 0.005
(3.940) (0.754)

NONCASH_WORKING_CAPITAL 0.016 -0.006
(1.600) (-0.758)

FIRM_AGE 0.006** <0.001**
(2.720) (2.481)

EXCESS_CASH 0.001*** <0.001
(4.930) (-0.182)

DEAL_RATIO 0.001 0.024***
(1.440) (23.766)

STOCK_DUMMY -0.002 -0.006*
(0.660) (-1.830)

CASH_DUMMY 0.008*** 0.013***
(4.360) (3.917)

HIGH_TECH_DUMMY -0.007** -0.004
(2.210) (-1.341)

DIVERSIFYING_DUMMY -0.001 -0.003
(0.440) (-1.058)

Continued
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Replication Table IA13
Continued

Column (3)
Published Replicated

HOSTILE_DUMMY -0.020 -0.021**
(1.390) (-2.128)

PUBLIC_TARGET_DUMMY -0.017*** -0.027***
(4.720) (-8.898)

CHALLENGE_DUMMY 0.015** -0.010
(2.300) (-1.358)

TARGET_INDUSTRY_M&A_INTENSITY 0.001
(0.570)

Intercept 0.012 -0.032
(0.740) (-0.487)

No. of obs. 6376 6674
Adj. R2 0.030 0.110
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Replication Table IA14
Replication of Roosenboom, Schlingemann, and Vasconcelos (2013), Table 2, Column (3).
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and acquiring firm stock liquidity. The dependent variable is the acquiring firm’s cumulative
abnormal return, which is aggregated over the 5-day trading window beginning 2 trading days prior to and ending
2 trading days following the merger announcement. All variables are as defined in Roosenboom, Schlingemann, and
Vasconcelos (2013). Replication code written in the foghorn declarative econometric language and the transpiled SQL
data manipulation code are available on Github. p-values are reported in brackets. Coefficients displayed in bold represent
the key economic variable of interest in the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5%
and 10% level, respectively.

Column (3)
Published Replicated

Stock Liquidity -0.038*** -0.006***
[0.006] [<0.001]

Payment = Equity -0.008*** -0.016***
[0.005] [<0.001]

Target = Public -0.024*** -0.026***
[<0.001] [<0.001]

Target = Subsidiary 0.010*** 0.006*
[0.001] [0.061]

Relative Size -0.002 0.005
[0.800] [0.418]

Total Assets <0.001 0.001
[0.996] [0.560]

Leverage <0.001 0.022*
[0.997] [0.067]

Market to Book 0.001 -0.015
[0.514] [0.108]

Cash Flow 0.018 -0.003
[0.401] [0.840]

Observations 3815 4189
Adjusted-𝑅2 0.057 0.074
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Replication Table IA15
Replication of Wang and Xie (2009), Table 5, Column “TCAR”.
The table reports estimation results from linear regression models examining the relation between the market reaction to
acquisition announcements and shareholder rights. The dependent variable is the acquiring firm’s cumulative abnormal
return, which is aggregated over the 11-day trading window beginning 5 trading days prior to and ending 5 trading days
following the merger announcement. All variables are as defined in Wang and Xie (2009). Replication code written in
the foghorn declarative econometric language and the transpiled SQL data manipulation code are available on Github.
t-statistics are reported in parentheses. Coefficients displayed in bold represent the key economic variable of interest in
the paper. Coefficients marked with ***, **, and * are significant at the 1%, 5% and 10% level, respectively.

Column “TCAR”
Published Replicated

Shareholder-rights difference 0.836*** 0.594**
(Target index - bidder index) (3.480) (2.170)

Bidder Characteristics:
Log(market cap) 2.084 0.582

(1.250) (0.207)
Tobin’s Q -0.543 -0.589

(-0.570) (-0.539)
Leverage -10.512* -13.799***

(-1.710) (-2.590)
Return on assets (ROA) 35.827*** 38.425***

(2.660) (2.866)
Target Characteristics:
Log(market cap) -3.985** -6.677**

(-2.480) (-2.194)
Tobin’s Q -0.114 -0.624

(-0.100) (-0.649)
Leverage -1.101 4.273

(-0.170) (0.876)
Return on assets (ROA) -12.927 -9.049

(-1.200) (-0.854)
Deal Characteristics:
Market cap ratio -5.770 -8.000***

(-1.590) (-2.623)
Tender offer 9.859** 5.007*

(2.550) (1.833)
Diversifying acquisition 3.873 3.232

(1.500) (1.579)
All cash deal 2.022 2.059

(0.440) (0.782)
Merger of equals -9.446*** -0.385

(-3.990) (-0.100)
High-tech combination 0.042 -1.284

(0.010) (-0.574)
Number of Obs. 396 378
Adjusted R2 0.216 0.190
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